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Chapter 1

Introduction

Most graduate text books on solid state physics or Condensed Matter Physics begin with the

definition of a Bravais lattice with some type of symmetry: A (three-dimensional) Bravais

lattice consists of all points with position vector R of the form

Rn =
3∑
i=1

niai (1.1)

where ai’s are any three non-coplaner vectors and ni’s are integers [Ashcroft and Mermin,

1976]. From a lattice we get a crystal structure when we assign one or more atoms, defined

as basis, to each lattice point. This basis can be made of only one type of atom, or more.

The point we miss is that this is a mathematical description of ideal lattice [Kittel,

2005]. In real life, in first place, we can never have an infinite lattice. Even if we assume

this edge/surface effect is negligible in the bulk [Ashcroft and Mermin, 1976, Chapter 18],

it is still very difficult to have a perfect lattice. Natural lattices always have many kinds of

defects [Ashcroft and Mermin, 1976, Chapter 30].

The assumption of an underlying lattice symmetry hugely simplifies the problem and

enables us to consider many complex structures. Bloch’s theorem enables us to state sym-

metries of the wave functions even before solving the Schrödinger equation which leads to

them.

But there are many situations like in confined systems(clusters), surfaces and random

alloys where we cannot invoke lattice translation symmetries. For first two classes of prob-

lems, we basically consider them as a infinite systems with large separation between each

unit. On the other hand, for random alloys we need to take different approach. These will

be the classes of materials studied in this thesis.
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Brief Comments on Alloys

1.1 Brief Comments on Alloys

An alloy is a solid solution composed of two or more constituents. Alloys are prepared taking

real life application into account. Some properties are enhanced to suit specific applications.

For example, stainless steel, a ternary alloy, made of Fe, Cr and C is stronger than Fe and

rust free. It is widely used in everyday life [Armgnac, 1930]. Starting from the “Bronze

Age”, one of the first achievements of human civilization is its ability to smelt an ore, with

an alloy of Cu and Sn.

In modern world, alloys are ubiquitous. Chemisorption, catalysis, semiconductor device

physics, liquid metals, glasses etc. are all based on study of alloys. Their various properties

like optical, electrical, magnetic, structural and elastic are under intense investigation [Gonis,

1992].

(a) (b)

Figure 1.1: Binary lattice for A50B50 alloy: (a)ordered configuration: Blue atoms are ar-

ranged along one diagonal, Red atoms are arranged in opposite diagonal. (b)disordered

configuration: Blue and Red atoms are arranged in a complete disordered manner.

The generic symbol of a binary alloy (alloy with two constituent elements) is AxB100−x

where A and B are the elements and x is the atomic percentage of A. According to the lattice

structure and value of x, alloys become ordered or disordered. For example, for a simple

cubic structure, the necessary but not sufficient condition for being in an ordered phase is

that the concentration of A is nx where n is an integer with 1 < n 6 7 and x = 12.5. For

2



Section 1.1

other concentrations, ordered phase is not possible.

(a) (b) (c)

Figure 1.2: Citation per year on topic disordered alloy form http://apps.isiknowledge.com/

portal [web of knowledge, 2012], using search criteria “Topic=(alloy) AND

Topic=(disordered), Search language=English Lemmatization=On ”(a)Year 1950 to

1980;(b)Year 1981 to 2000; (c)Year 2001 to 2011. The data indicates meteoric rise in

citations on the work on disordered alloys during 1980-2000 and its eventual saturation.

But the disordered phase is possible even for all those concentrations depending on the

ordering energy of the alloy (see § 4.2 on page 74). Figure 1.1 shows an ordered and a

disordered arrangement in a square lattice for A50B50 alloy.

Figure 1.2 shows papers published with title containing ‘alloy’ and ‘disorder’ from 1950

to 2011 [web of knowledge, 2012]. It clearly shows there has been a huge increase in interest

during last twenty years, just when digital computers became sufficiently powerful to handle

sophisticated algorithms and data needed to solve this type of problem. This is due to

the fact that, as we lose the crystal symmetry, even by a single defect, the consequence is

considerable. First of all, Bloch’s theorem is no longer valid. So, the crystal momentum k̃

and k -selection rules are no longer applicable. Hence, to get any microscopic property, we

need to study different specific alloy configurations. To have an idea, a material with N

sites with C defects, the number of possible configuration is NPC . If we consider N ∼ 1020,

we readily understand the amount of difficulty that we face. How we tackle this difficulty is

discussed in detail in § 2.6 on page 32.

The earliest study of disordered systems may be traced back to Lord Rayleigh’s paper
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Brief Comments on Alloys

on multiple scattering theory(MST) [Rayleigh, 1892]. By the 1960’s the field got much

needed impetus through the works of Korringa [Korringa, 1947], Lax [Lax, 1951, 1952] and

Beeby [Beeby, 1964a,b]. These studies provided the formal background of MST. Many

different approximations were proposed for the electronic structure of disordered alloys. The

same time saw emergence of several approaches of dealing with disorder. The advent of

Density functional theory [Hohenberg and Kohn, 1964; Kohn and Sham, 1965] and the digital

computer helped these studies to progress. The accuracy of any model could be easily

checked. Among those approximations, the rigid band approximation [Stern, 1967], the

virtual crystal approximation [Dargam et al., 1997] and the coherent potential approximation

[Soven, 1967] are particularly noteworthy. These techniques are discussed briefly in §3.1. In

1973, Mookerjee introduced the augmented space formalism(ASF) [Mookerjee, 1973], which

went beyond the mean field approach to the study of disorder and included environmental

effects in its orbit.

Most of the study of alloy systems has been based on a ‘local’ representation basis e.g.

tight binding(TB) and/or linear combination of muffin-tin orbitals(LMTO) description of the

Hamiltonian. TB version of LMTO also been used widely(see §2.4.3). Coherent Potential

Approximation (CPA) based on the TB-LMTO approximation is very successful [Kudrnovský

et al., 1990; Kudrnovský and Drchal, 1990]. But it was a mean field approximation. It could

not take into account effect of local environment.

Augmented space method was introduced to bridge this gap. It was one of the successful

generalizations of the CPA and could incorporate environmental effects at a site.

Great progress has been made in study of disordered alloys. But effect of disorder in

solids is still debated. As quoted from Kittel [Kittel, 2005, 8th edition]

“Experiment and theory agree that the consequences of the destruction of

perfect translational symmetry are much less serious (nearly always) then we

expect at first sight”

This viewpoint needs discussion. While, as shown by Kittel that properties like resistivity

are linear with composition, that does not end the story. As stated at the very beginning,

alloys are made keeping their industrial application in mind. Their phase space, magnetic

and mechanical properties are strongly dependent upon composition (and ordering). For
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example, we will show later in this thesis (see, for example Figure. 5.5 on page 101) that

magnetic property changes drastically between 20%-25% Mn concentration in NiMn alloy.

An linear interpolation of magnetic data will give severely wrong result; making the alloy

unusable to real world.

1.2 Brief review on magnetism and frozen phases

The fundamental building block of magnetism is the magnetic moment: for a current I

around a loop |dS|, magnetic moment is defined as

dm = IdS (1.2)

This leads to orbital moment(l) of electron. The intrinsic magnetic moment or spin(s) of

electron is another source of magnetism. In a real system, these two are often coupled, via

the spin-orbit coupling. This coupling produces a total magnetic moment(j) of the system.

In metallic system, itinerant electrons also contribute to the total magnetic moment. For

Figure 1.3: Filling of 2nd row of periodic table according to Hund’s rule. Total spin and

orbital momentum are as follows: Li(S=1
2
, L=0); Be(S=0, L=0); B(S=1

2
, L=1); C(S=1,

L=1); N(S=3
2
, L=0); O(S=1, L=1); F(S=1

2
, L=1); Ne(S=0, L=0)

insulators, describing magnetism is relatively simpler. Hund’s rule describes the filling of

electron such that the spin quantum number S and orbital quantum number L are always
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Brief review on magnetism and frozen phases

maximum given the number of electron. It also requires J = |L − S| for n 6 2l + 1 and

J = |L+S| for n > 2l+ 1 where n is the number of electron in the shell and l is the angular

momentum. The filling up of isolated atoms of second row elements of periodic table and

their moments are shown in Figure 1.3. In this thesis, we shall not discuss magnetism of

insulator. Interested readers are refereed to [Kaxiras, 2003] for a lucid and detail discussion.

Magnetism in metals is rather interesting. The contribution comes from both local and

itinerant electrons as described above. As a first approximation, we consider the itinerant

electrons to be free fermion of spin 1
2

in an external magnetic field. This leads to Pauli

paramagnetism with magnetic moment of each particle m = g0µB where g0 = 2.003 is

electronic g-factor and µB is Bohr magneton.

The orbital motion of electron, on the other hand, in presence of external magnetic

field, tries to shield the external field, leads to Landau diamagnetism [Peierls, 1955]. Pauli

paramagnetism and Landau diamagnetism are seen in metals. They are equivalent in mag-

nitude and opposite to each other in sign. The theory of Pauli and Landau is based on

non-interacting microscopic moments, which is not correct for electrons in metal. The model

that take the electron-electron interaction is Heisenberg spin model. The model is based on

interacting spins S(R) at the lattice site R. Spins at site R and R′ interact with each other

via the exchange term J = J(R−R′). The Heisenberg hamiltonian is

H = −1

2

∑
R 6=R′

J(|R−R′|)S(R) · S(R′) (1.3)

If the exchange term J is positive, the system is ferromagnetic as 〈S(R) ·S(R′)〉 > 0 , which

leads to minimal energy and spins will be oriented in same direction. When J < 0, the spins

tend to orient in opposite direction to each other, leads to antiferromagneic ordering.

Temperature destroy magnetic ordering. Table 1.1 shows critical temperatures of few

elements and compounds and also the number of Bohr magnetons per atom,nB, which is

difference between up and down electrons. Higher the value of nB, higher is the magnetic

property of the solid. The saturation magnetization, M0 is the magnetization when all spins

are aligned in same direction. Generally, to achieve this state, we need external field. This

leads to domain structure. As in ferromagnetic interaction, the dominant interaction tries to

align neighboring sites aligned parallel to itself, which is not energetically favorable. Other
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Elements

Ferromagnets Antiferromagnets

Solid Tc nb M0 Solid Tn

Fe 1043 2.2 1752 Cr 311

Co 1388 1.7 1446 Mn 100

Ni 627 0.6 510 Ce 13

Compounds

Ferromagnets Antiferromagnets

Solid Tc Solid Tn

MnB 152 MnO 122

FeP 215 NiO 600

CrTe 339 CoF2 38

Table 1.1: Examples of Ferromagnets and Antiferromagnets. Tc is Curie Temperature, TN

is Néel temperature, nB is number of Bohr magneton per atom and M0 is saturation mag-

netization in Gauss [Car and Parrinello, 1985; Kaxiras, 2003]

.

Figure 1.4: Magnetic domain structure. The arrows in the domain shows local magnetic

directions. The filled arrow in the middle shows the direction of magnetic field applied to

the system in the right.
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moments will orient at different angle to each other to minimize the energy of the system.

Though this long range dipole interaction is much weaker than short range magnetic order,

the huge number of such dipole in macroscopic scale makes the term significant and hence,

must be optimized.

The system accommodates this by breaking into parallely aligned subsystems, called

domain. In a domain, all moments are parallel but not correlated with neighboring domain.

When a magnetic field is applied in certain direction, the domain with intrinsic moment

along that direction grows larger in expense of other domains, as shown in Figure 1.4.

In paramagnetic interaction, no such short range ordering is observed to create domain;

rather microscopic magnetic moments are oriented in random order. Now if ferromagnetic

and antiferromagnetic interactions coexist in a spin system, then their origins a frustrating

interaction and the system becomes disordered. Usually, this property is seen in dilute

magnetic materials, where magnetic atoms randomly substitute nonmagnetic matrix. Classic

examples of this type of system are AuFe and CuMn.

Cannella and Mydosh [Cannella and Mydosh, 1972] showed unusual phase transition in

AuFe alloy. The ac magnetic susceptibility showed a maximum at a frequency-dependent

temperature Tf . This type of cusp in ac magnetic susceptibility is then seen in many other

spin glass and became a signature of this type of system.

Edward and Anderson [Edwards and Anderson, 1975](EA hereafter) tried to describe this

system using

H = −1

2

∑
x,y∈Λ
x∼y

JRi,Rj
sRi

sRj
(1.4)

where Λ is the complete system and x ∼ y is x and y are nearest neighbor. Few months later,

Sherrington and Kirkpatrick [Sherrington and Kirkpatrick, 1975](SK hereafter) put forward

a mean field solution of Edward and Anderson’s model, named “replica symmetry”. This

model turned out to be incorrect and self contradictory. The local free energy extrema turned

out to be unstable and led to a negative entropy as T → 0. Parisi [Parisi, 1980] overcome

the problem by introducing “continuous replica symmetry breaking scheme”. Mézard et al

[Mézard et al., 1987] collected the results published still 1987 using replica breaking scheme

and other. Various models keep coming. Among them, “Generalized random energy model ”
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by Derrida [Derrida, 1985] is particularly famous for it is exactly solvable and its prediction is

similar to SK model. Binder and Young [Binder and Young, 1986] summarized the evolution

and problems raised in this field in 1986. The progress in next one decade was summarized

by Bovier and Picco [Bovier and Picco, 1998] in 1998. Newman and Stein [Newman, 1997]

show fundamental difference between EA and SK’s model. So, not much optimism left until

Guerra [Guerra and Toninelli, 2002] and Toninelli [Guerra, 2003] solved some mathematical

problems like the existence of Thermodynamic limit of SK model. A brief and up-to-date

review of mathematical development of spin glass is given by [den Hollander and Toninelli,

2004]. Overall, a dependable model for Spin Glass is still alluring physicists. The reason is

two fold

(a) EA model is far yet to be solved.

(b) Mean field approximation (SK model) can not explain the broken symmetry of short

ranged systems.

The underlying reason is discussed in detail in [Newman and Stein, 2003b,a]. A very readable

account of this history is available in [Stein, 2004; Stein and Newman, 2011].

Condensed matter Physicists took a rather different approach. The starting point is

the Landau and Lifshitz’s (LL) theory [Landau and Lifshitz, 1935] on precision of local

magnetization in the presence of local magnetic field. LL equation is applicable to solids,

as well as thin films and nano-strips [Hillebrands and Ounadjela, 2002, 2003, 2006]. Brown

[Brown, 1963] and Kubo etal [Kubo and Hashitsume, 1970] extend LL equation for finite

temperature using Langevin dynamics for magnetic nanoparticles [Brown, 1963] and classical

single spin [Kubo and Hashitsume, 1970] system.

Antropov [Antropov et al., 1995, 1996] developed a method to calculate magnetization

dynamics with time within the framework of density functional theory. Stocks [Stocks et al.,

1998; Ujfalussy et al., 2004] later extend the method to self consistent field.

1.3 Plan of the Thesis

This thesis is organized as follows:
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In chapter 2 I have discussed various methods used to calculate electronic and magnetic

properties of systems without periodicity. First, given a brief description to the com-

plete Hamiltonian, I move to the density functional theory and its extension to magnetic

systems. DFT gives the chemical signature of the constituent elements. Then I gave

a detailed introduction to multiple scattering theory. I then discussed the TB-LMTO-

ASA formalism in details that is general for electronic structure theory. Augmented

space formalism comes next which is our preferred tool for studying disorder alloy. This

completes our toolbox for studying electronic structure of systems without periodicity.

I next discussed the orbital peeling technique as a method for obtaining effective pair

interactions. Since this technique is not widely used, I have discussed the methodology

in detail and the reasons behind choosing this over other formalism. As spin glass

system is one of our focus system I studied, I discussed atomistic spin dynamics based

on Landau-Lifshitz-Gilbert equation. These two methods enable us to calculate spin-

spin auto-correlation function that surely gives a very dependable way to study the

possibility of existence of any spin frozen phase.

In chapter 3 I have discussed the Augmented Space Recursion(ASR) based code ScAS-

Rthat have developed and used through out my research. Its theoretical background

is given in §2.6. In this chapter I have detailed the algorithm and working principle.

I have also shown its superiority compared to previously available ASR based code as

far as efficiency and runtime is concerned. In the beginning of this chapter I have also

reviewed other methods suitable for disordered systems and showed there pros and

cons that make me choose ASR based algorithm.

In chapter 4 I have discussed implementation of ScASR , a self consistent ASR based code

and Orbital peeling technique in three binary alloys. As for any new code, the work in

this chapter is a testing ground for the code. I show its applicability and accuracy in

various previously studied alloy systems.

In §4.1 I have discussed Electronic structure of two very different type of alloys: CuZn

shows ‘split band’ Density of states(DOS), and FeCr has ‘overlapping band’ DOS.
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In §4.2 I have discussed Electronic structure and stability of the MnCr alloy system.

In §4.3 I have discussed the Electronic structure and Effective Pair interaction of AuFe

Alloy.

In chapter 5 I have carried out ab initio density functional calculations along with finite

temperature studies using mean field field analysis and Inverse Monte Carlo simula-

tions. Our theoretical analysis was in two steps. A DFT based calculation of the for-

mation of moments in atomic spheres and a statistical analysis of the free-energetically

the most favorable arrangement of these moment carrying spheres. Since I believe that

the spin-glass transition is a dynamic freezing of spin degrees of freedom, I studied

magnetization relaxation using a LLG formalism. I showed that in the composition

range where experiment observes spin-glassy behavior, I also see aging behavior and

anomalously slow relaxation of magnetization. The DFT part was done for uniaxial

spins, I were unable to describe the ferro-spin-glass or the anti-ferro-spin-glass mixed

phases. Since the moments are randomly canted in these phases it would have re-

quired a generalization of the DFT part to allow description of non-collinear magnetic

moments before carrying out the statistical analysis of their favorable arrangements.

I have carried out Reverse Monte Carlo simulation with effective pair energy result

from first principle calculation. I have shown this method is capable of reproducing

experimental results dependably, as shown in [Pal et al., 2012].

In chapter 6 I have discussed electronic and magnetic properties of FeNiMo alloy for var-

ious concentration. In the first half, I investigated the behavior of magnetization with

temperature and magnetic field of six samples at different compositions of this disor-

dered ternary alloy NiFeMo. I analyze the data using a fist-principles density functional

based electronic structure method and a mean-field phase diagram study. For five of

the compositions there is a clear indication of transition from a paramagnetic to a

random ferromagnetic phases. Fe boosts and Mo depletes the fragile moment on Ni.

The sixth sample with large Mo concentration showed the possibility of a glassy phase.

In the second part of this chapter I carried out more intense study to see if there is and

frozen phase exists in high Mo sample. Comparing our theoretical investigation along
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with experimental study shows a possible ferro-spin-glass mixed phase in this regime.

In chapter 7 I have discussed electronic and magnetic properties of FeNiW alloy for various

concentration. This is actually a continuation of work done in §6 in the sense that in this

two chapter I have studied effect of 4d and 5d element in permalloy respectively. Using

first-principles LSDA based TB-LMTO-ASR method I have obtained the magnetic

moment across the composition range. I compared our results with the experimental

saturation magnetization. Based on the generalized perturbation expansion, I mapped

the energetics of the problem onto an equivalent random Ising model. The pair energies

of the Ising model were derived from the TB-LMTO-ASR using Lichtenstein’s formula.

Our mean-field analysis of the model shows that at low Fe concentrations not only

frustration decreases, but Ni also loses its moment. The resulting phase diagram

confirms the possibility that spin-glass transition may not take place in this system

even at low Fe concentrations, as found experimentally.

In chapter 8 I have discussed the effect of Cr in AuFe alloy. For reference, I have taken

the spin glass limit of Cr ( 10 to 15 atomic %) as in binary AuCr alloy as the reference

for Cr and varied the Cr concentration of Cr around the concentration. I have shown

the breaking of breaking of spin-glass phase around binary Cr concentration. I have

also shown that spin glass phase is only possible when Au concentration is high and

among Fe and Cu, one is high and other is very less.
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Chapter 2

Methodology

2.1 Introduction

A solid is made up of atoms bonded together by a sea of valence electrons. For example, let

us consider solid Na. If we examine the Na atom we see that at its nucleus contains eleven

protons and twelve neutrons bound together by nuclear forces. In the energy range of our

interest, i.e. up to a few hundred eV, we are unable to probe the structure of this nucleus.

We shall model the nucleus by a point object of charge +11e. The eleven electrons which

neutralize this nucleus have the structure 1s22s22p63s1, arranged with decreasing binding

energy in the attractive Coulomb potential of the nucleus. Of these, the first ten electrons

are so tightly bound to the nucleus that when these Na atoms bind together to form a solid,

these electrons hardly change their quantum state. These are called core electrons. If we

probe the solid with energies lower that that required to excite these core electrons out

of their bound quantum states, then we can consider the nucleus and these core electrons

together as a single, featureless ion-core with a single positive charge on it. These Na+ ion

cores are arranged on a lattice. The outermost 3s1 electron is given up by the Na atom to

form the valence electron cloud in which the ion-core lattice is immersed. The Figure 2.1

illustrates this model.

Why does the valence cloud bind the solid together ? If the valence cloud were not there

the ion-cores would repel one another by Coulomb repulsion and could not form a bonded

solid. If they are immersed in the valence cloud, then if we consider a small negative charge

packet as shown in the Figure 2.1, it will attract two of the neighbouring ion-cores towards

it. These ion-cores will then see an effective, indirect attraction via the valence cloud. If

this attraction can just balance the Coulomb repulsion for a given configuration of the ion-

cores, then this will be the stable configuration of the ion-cores in the solid. The ion-cores

are then the building blocks we have been talking about, the valence charge cloud the glue
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Figure 2.1: Model of ions immersed in electron sea: a cartoon

that holds them together, and the stable configuration the underlying lattice. Of course the

ion-cores are not static in the equilibrium configuration. At temperatures much below the

melting temperature, the ion-cores can at most vibrate with amplitudes much less than the

inter-ionic distances. When the amplitude is comparable to the inter-ionic spacing, the solid

becomes unstable and a transition to a liquid state takes place. We shall be sufficiently far

from this instability temperatures. Even at 0oK, quantum mechanical uncertainty principle

dictates that there with be zero-point vibrations of the ion-cores.

This is the model that will be our starting point. We shall first describe the quantum

mechanics of the system of ion-cores and valence electrons. The great advantage in this

problem is that the interaction potentials are all Coulombic and hence exactly known. The

disadvantage, as we shall see, is the immense number of interacting objects.
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2.2 Many-body Schrödinger Equation

Based on above model, we write Hamiltonian of the system. For M atoms sitting at position

{RI} and N = ZM electrons, where Z is the number of valence electron per atom, sitting

at {ri}, the Schrödinger Hamiltonian is given by:

Ĥ = − ~2

2me

∑
ri

∇2
ri
− ~2

2MI

∑
RI

∇2
I −

∑
ri,RI

ZIe
2

|ri −RI |
+

1

2

∑
ri,rj

e2

|ri − rj|

+
e2

2

∑
RI ,RJ

ZIZJ
|RI −RJ |

(2.1)

in short,

Ĥ = T̂e + T̂N + V̂int + V̂ext + V̂NN (2.2)

where, using Hartree units,

T̂e = −
∑
ri

1

2
∇2

ri
(Kinetic Energy of Electrons)

T̂N = −
∑
RI

1

2
∇2

RI
(Kinetic Energy of Nucleus)

V̂ext = −
∑
ri,RI

ZIe
2

|ri −RI |
(Ion-Electron interaction)

V̂int =
1

2

∑
ri,rj

1

|ri − rj|
(Electron-Electron interaction)

V̂NN =
1

2

∑
ri,RI

ZIe
2

|RI −RJ |
(Ion-Ion interaction)

This is a multi-component many-body system and the two-body nature of V̂ext makes

the equation inseparable. As a consequence, beyond some simple systems like hydrogenoid

atoms and H+
2 molecule, its not possible to solve it analytically. Even numerically, a com-

plete solution of eqn. (2.1) are available only for few cases like single atoms and very small

molecules.

The most of this chapter is review on the development of some reasonable and well-

controlled approximations that will enable us to calculate a wide variety of systems, that are

of interests.
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2.2.1 Born Oppenheimer approximation

The first step in this approximation is that the nuclei is much heavier than the electrons (rest

mass is 1:1836) [Born and Oppenheimer, 1927] and so is the time scale associated with the

motion of them. For the bounded systems, the smallest excitation energy (Ee) for electron

is of “particle in a box” nature and varies from 0eV (for metal) to few eV (1.1eV in Si, 4eV

in Diamond). On the other hand, nuclear vibration energy, in harmonic approximation, is

Ev = ~ω ≈ Mω2a2 = (m/M)1/2Ee; rotational energy of the nuclei is Er = L2/I where L

is the angular momentum and I is the moment of inertia of the molecule. L is quantized

in levels separated by energy ≈ ~, hence, Er ≈ ~2/Ma2 = (m/M)Ee. So, even for lighter

molecules like N2, where we have (m/M)=3.89×10−5, and energy of the nucleus is negligibly

small.

In metallic systems with Ee = 0eV , strictly, this approximation is not valid. But, since in

typical experiments the temperature range used is much lower than the Fermi temperature,

excitation is generally confined in a narrow region around the Fermi surface and the electronic

properties are little affected by this approximation.

Mathematically, this is a separation of variable

Ψ({ri}, {RI}) = φ({RI}) ψ({ri}, {RI})

Using this approximation in eqn. (2.1), we get

H =− ~2

2MI

∑
Rn

∇2
RI
{φ({RI}) ψ({ri}, {RI})}

+ ψ({ri}, {RI})

[∑
RI

∑
RJ

Z2e2

|RI −RJ |

]
φ({RI})

+ φ({RI})

− ~2

2me

∑
ri

∇ri
2 +

∑
ri

∑
rj

e2

|ri − rj|
−
∑
RI

∑
ri

Ze2

|ri −RI |

ψ({ri}, {RI})

= E φ({RI}) ψ({ri}, {RI}) (2.3)

Neglecting the smaller terms, we get a separable Schrödinger’s equation with two equation:
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one for electrons−1

2

∑
ri

∇ri
2 +

∑
ri

∑
rj

1

|ri − rj|
−
∑
RI

∑
ri

Z

|ri −RI |

ψ({ri}) = E({Rn}) ψ({ri} (2.4)

and one for ion-cores:[
− 1

2MI

∑
RI

∇2
RI

+
∑
RI

∑
RJ

Z2

|RI −RJ |
+ E({RI})

]
φ({RJ}) = Eφ({RI}) (2.5)

in Hartree unit.

2.3 Density Functional Theory

Though the mathematical description of many electron system is given by eqn. (2.4), it has its

own difficulties. Since the exact analytical solution has been possible for very few potentials

even for a single particle and hence we have to depend upon approximate methods, such as

variational principle or the perturbation theory. Alternatively, although we can adopt direct

numerical solution in principle, difficulty arises due to the large number of variables (3N)

involved in the wave-function ψ(r1, r2, ...., rN) and also in its interpretation.

Attempt to solve the problems due to (a) large number of variables (b) lack of easy

interpretation and (c) the so called electron correlation has led to the development of newer

approaches. An important class of methods has been based on the variational principle where

we minimize the quantity Ẽ =
〈
ψ̃ | H | ψ̃

〉
. Using suitable forms for the trial function ψ̃

mainly guided by the one-particle orbital picture leading to single particle self-consistent

field schemes like Hartree, Hartree-Fock and multi-configuration methods.

An alternative approach has been based on reduction to lower dimensions. Although

the wave-function ψ(r1, r2, ...., rN) is a function of 3N variables, the expectation value A =〈
ψ | Â | ψ

〉
can be calculated through other derived quantities that depend on less number

of variables, if Â is a sum of one- or two-particle operators, as is the case for the Hamiltonian.
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Thus, for the ion-core-electron potential energy consisting of one-particle terms, we have∫
ψ∗(r1, r2, ...., rN)

∑
i

v(ri) ψ(r1, r2, ...., rN) dr1 dr2....drN

= N

∫
dr1v(r1)

∫
ψ∗(r1, r2, . . . , rN)ψ(r1, r2, ...., rN) dr2dr3....drN

Here,

v(ri) =
∑
Rn

Z

|ri −Rn|
and Vie =

〈
ψ

∣∣∣∣∣∑
ri

v(ri)

∣∣∣∣∣ψ
〉

=

∫
dr v(r)ρ(r) (2.6)

valid for any single-particle multiplicative operator, where the single-particle density is de-

fined as

ρ(r1) = N

∫
ψ∗(r1, r2, ...., rN)ψ(r1, r2, ...., rN)dr2 dr3....drN (2.7)

Similarly, for two-particle multiplicative operators such as the electron-electron repulsion,

we can write

Vee =

〈
ψ

∣∣∣∣∣12 ∑
i,j

1

|ri − rj|

∣∣∣∣∣ψ
〉

=
1

2

∫
dr1 dr2

Γ2(r1, r2)

|r1 − r2|
(2.8)

where the two-particle density is defined as

Γ2(r1, r2) = N(N − 1)

∫
ψ∗(r1, r2, ...., rN)ψ(r1, r2, ...., rN) dr3....drN (2.9)

The reduced density functions can also be expressed as the expectation values of the corre-

sponding density operators, viz.

ρ(r) =

〈
ψ

∣∣∣∣∣∑
i

δ(r − ri)

∣∣∣∣∣ψ
〉

Γ2(r1, r2) =

〈
ψ

∣∣∣∣∣∑
i 6=j

δ(r1 − ri)δ(r2 − rj)

∣∣∣∣∣ψ
〉
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For the kinetic energy term which involves differential operators, we can write

T = −

〈
ψ | 1

2

∑
i

∇2
i | ψ

〉
= −N

2

∫
ψ∗(r1, r2, ...., rN)O2

1ψ(r1, r2, ...., rN) dr1dr2dr3....drN

= −N
2

∫ [
O2

1ψ
∗(r′1, r2, ...., rN)ψ(r1, r2, ...., rN)

]
r1=r′

1
dr1dr2dr3....drN

= −1

2

∫
dr1

[
O2

1γ(r1; r′1)
]
r1=r

′
1

(2.10)

with the first-order reduced density matrix (RDM) defined as

γ(r1; r′1) = N

∫
ψ∗(r′1, r2, ...., rN)ψ(r1, r2, ...., rN)dr2 dr3....drN (2.11)

Clearly, the following relationships among the reduced density functions and matrices

hold good.

ρ(r1) = γ(r1; r1) ; Γ2(r1, r2) = Γ2(r1, r2; r1, r2) ; γ(r1; r′1) = γ∗(r′1; r1)∫
ρ(r1)dr1 = N ;

∫
Γ2(r1, r2)dr1dr2 = N(N − 1)

ρ(r1) =
1

N − 1

∫
Γ2(r1, r2)dr2

For spin-polarized situation, we have to include the spin dependence, viz.

ρ(r) −→ ρ(x) = ρσ(r) ;

∫
dr −→

∫
dx =

∑
σ

∫
dr

ρ(r) = ρ↑(r) + ρ↓(r) ; m(r) = ρ↑(r)− ρ↓(r)

The total energy can thus be expressed in terms of the reduced density matrices (RDM)

as

E [ρ, γ,Γ2] = T [γ(r1; r′1)] + Vie [ρ(r)] + Vee [Γ2(r1, r2)] + Vnn (2.12)
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which leads to the possibility of developing a quantum mechanics of many-electron systems

in reduced space in terms of the RDM’s bypassing the wave-function. One of the important

requirements is the possibility of direct determination of RDM by minimizing the energy with

respect to the RDM’s for which the effect of Pauli exclusion principle has to be built-in into

the RDM’s. The existence of an antisymmetric ψ from which the RDM’s can be obtained

has to be guaranteed.

This is the so called N -representability problem which has to be solved by imposing

necessary and sufficient conditions on γ1(r1; r′1) and Γ2(r1, r2), which are unfortunately not

yet known. The N -representability conditions on ρ(r) are however known and are very

simple, viz. ∫
ρ(r)dr = N ; ρ(r) ≥ 0. (2.13)

This makes the single-particle density (simplest reduced quantity) a promising candidate

for the formulation of quantum mechanics in reduced space. Some of the many advantages

for the electron density ρ(r) to be the basic variable are: (a) it is a function in 3D space

in which we live and perceive (b) it is simpler to tabulate and plot (c) it provides a better

visualization (d) it is an experimental observable, thus enabling one to compare the results

of theoretical calculations directly with experiments.

Thus, the question now is whether it is possible to develop a quantum theory in terms

of density alone bypassing the wave-function, for which one has to ensure if (a) the density

contains sufficient information (b) calculation of the properties and the energy is possible

from the density alone (c) it is possible to develop a method for the direct calculation of

density.

The possibility of a density description of many-electron systems has been explored by

many people leading to the so called density functional theory (DFT). Although the first

DFT, namely, the Thomas-Fermi [Thomas, 1927; Fermi, 1927] method has existed since

1927, the birth of modern DFT has been through the formal proof of Hohenberg and Kohn

[Hohenberg and Kohn, 1964] theorem.

Density Functional Theory (DFT) is the basis of most modern electronic structure cal-

culations. It shows that a correlated many-body system can be solved by means of a scalar

function of coordinate. Originating from crude approximation of Thomas and Fermi in 1927,
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it came into usability when Hohenberg and Kohn proposed its modern form.

2.3.1 Hohenberg-Kohn Theorem

DFT is based on two theorems proposed by Hohenberg and Kohn [Hohenberg and Kohn,

1964],

Theorem 1. For any system of interacting particles in an external potential Vext, the poten-

tial Vext is determined uniquely, except for a constant, by the ground state particle density

ρ0(r).

Theorem 2. A universal functional for the energy E[n] in terms of ρ(r) can be defined,

valid for any Vext. For any particular Vext, the exact ground state energy of the system is

the global minima of the functional, and the ρ(r) that minimizes the functional is the exact

ground state density ρ0(r).

i.e. for any trial density ρ̃ satisfying ρ̃ > 0 and
∫
ρ̃dr = N ,

E[ρ0] 6 E[ρ̃]

Thus, the Hohenberg-Kohn total energy functional

EHK = T [ρ] + Eint[ρ] +

∫
Vextρ(r)d3r + EII

≡ FHK [ρ] +

∫
Vextρ(r)d3r + EII (2.14)

where, FHK [ρ] = T [ρ] + Eint[ρ] is a universal functional and EII is ion-ion repulsion. The

ground state electron density is one that minimizes E[ρ] via variational principle,

δ

{
EHK [ρ]− µ

[∫
ρ(r)dr−N

]}
= 0

⇒ µ = Vext +
∂FHK [ρ]

∂ρ(r)
(2.15)

Though these two theorems give a one-to-one correspondence between ρ(r) and Ψ0, the

ground state wave function, it had few limitations, like:
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• No prescription to determine Ψ0 for a given ρ0.

• Not applicable to degenerate state.

Another problem with this formulation was that the density ρ was V-representable; though

almost all problems in condensed matter physics can be formulated via this type of density,

it is not the general one. In a series of papers, Levy [Levy, 1979] and Lieb [Lieb, 1982]

introduced an alternative definition of the Hohenberg-Kohn theorems. This is a two step

minimization, where instead of searching the full N-particle Hilbert space for the trial density,

we constrain ourselves only to the space of trial wave functions that give the density ρ0(r).

2.3.2 The Kohn-Sham Equation

From eqn. (2.15), we are left with two problems: how to calculate T [ρ] and the non-classical

part of Vint. Thomas-Fermi model did this calculation using drastic approximation, too

crude to have any physical value. In their celebrated paper, Kohn and Sham[Kohn and

Sham, 1965] took rather indirect approach to calculate T [ρ],

Ts[ρ] =
N∑
i

〈
ψi

∣∣∣∣−1

2
∇2

∣∣∣∣ψi〉

ρ(r) =
N∑
i

∑
s

|ψi(r, s)|2 (2.16)

where, Ts[ρ], the single particle kinetic energy, exactly describes the non-interacting kinetic

energy. So, the Hohenberg-Kohn Energy in eqn. (2.14) turns out to be,

EKS = Ts[ρ] +

∫
Vext(r)ρ(r)dr + EHartree + EII + Exc[ρ] (2.17)

where

Exc[ρ] = FHK [ρ]−Ts[ρ]− EHartree[ρ]

= 〈T 〉 −Ts[ρ] + 〈Vint〉 − EHartree[ρ] (2.18)
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is the exchange-correlation energy, that includes all many-body effect the system has. So

now we see that EKS is a functional of orbital Ts and density. Implementing eqn. (2.15)

gives:
δEKS
δψi

=
δTs

δψi
+

[
δEext
δρ

+
δEHartree

δρ
+
δExc
δρ

]
δρ

δψ
= 0 (2.19)

which results in a Schrödinger like Kohn-Sham equation:

HKSψi = εψi (2.20)

where

HKS = −1

2
∇2 + VKS (2.21)

with

VKS = Vext + VHartree + Vxc (2.22)

eqn. (2.20)-(2.22) are the famous Kohn-Sham Equation.

We solve the Kohn-Sham equation using a self-consistent iterative scheme as shown in

the Figure 2.2

Input: ρ0

Calculate

VKS[ρn]

Solve KS equation

Calculate ψ(r) Calculate ρn+1

|ρn+1 − ρn| < ε

ρn+1 = αρn+1 + (1− α)ρn

output
yes

no

Figure 2.2: Simple flowchart for solving Kohn-Sham eqn. (2.20)-(2.22).
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2.3.3 Exchange and Correlation Potential

The many body effect of Kohn-Sham equation is included solely in Vxc and can be approxi-

mated as local or nearly local functional of density as

Exc =

∫
ρ[r]εxc[r, ρ]dr.

But the term εxc[r, ρ], the exchange-correlation density, is not uniquely defined. We have

to approximate its value and obtain from other methods. For solids, there are calculations

using quantum Monte Carlo simulation with a variational wavefunction, which shows that

the exchange term dominates over correlation. In their paper, Kohn-Sham [Hohenberg and

Kohn, 1964] chooses the term to that of homogeneous electron gas. It is easy but very

successful approximation as in this limit the exchange-correlation term is a local functional

of ρ. This is called local density approximation(LDA). Here Exc becomes,

Exc[ρ] =

∫
ρ[r]εhomxc [r, ρ]dr (2.23)

Since, for homogeneous gas, this term is universal, dependent of ρ only, we can have very

accurate calculation of this using Monte Carlo method [Ceperley and Alder, 1980].

LDA has been used very extensively! Though it is known from its theoretical foundation

and multiple studies that LDA fails for atomic systems or that of strongly correlated systems,

it is also known to give remarkably correct results for metallic systems, specially for extended

systems. Since all of our calculations are on metallic alloys, we have taken this level of

approximation in Exc[ρ].

2.3.4 Extension to spin system

DFT as outlined above, is based on the charge density ρ only, it is easy to extend it for

spin polarized systems, which is absolutely essential to study magnetic properties. We just

decompose the density ρ into two independent spin density ρ = ρ↑ + ρ↓ and eqn. (2.20)

becomes,

Hσ
KSψ

σ
i = εσψσi (2.24)
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where σ indicates the spin components (↑ or ↓). Here we also get the magnetization density

as

ζ(r) = ρ↑(r)− ρ↓(r) (2.25)

This very simple and logical extension of K-S eqn. (2.20)-(2.22) enables us to study magnetic

systems.

2.4 Solving Kohn Sham equation

There are three different methods of calculating independent particle electronic states in

condensed matter theory.

Plane wave methods: General approach to solve Poisson’s equation. Very efficient method.

Localized atomic orbital or LCAO: Atomic features and localized descriptions are very

well explained within this method.

Atomic Sphere Methods: The most general approach. The basic approach is to divide

the space between atomic region and inter-atomic region.

The top two method provides fixed energy based basis set, where the third one is

partial wave-like basis. We have chosen this type of solution to solve the Kohn-Sham

equation.

2.4.1 LMTO method

The first approximation in using atomic sphere method, is that the potential in the crys-

tal has a local spherical symmetry and extremely flat potential in interstitial space. This

approximation is called atomic sphere approximation(ASA) as shown schematically in Fig-

ure 2.3.

The wave function at energy E can be written as

ψj(k,r) =
∑
lm

bjkRlmψRl(E, |r−R|)ilY m
l (r̂−R) (2.26)
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Solving Kohn Sham equation

Figure 2.3: Atomic sphere approximation: The scatterer is of the same volume as Wigner-

Seitz cell; Blue regions are interatomic space; Brown region is overlap.

where bjkRlm is the expansion coefficient of the partial wave, Y m
l is a spherical harmonics, il

is a phase factor and ψRl a solution of radial Schrödinger equation[
− d2

dr2
+
l(l + 1)

r2
+ v(r)− E

]
rψl(E, r) = 0 (2.27)

Phase conventions of [Condon and Shortley, 1935] is used for spherical harmonics. Wigner

and Seitz [Wigner and Seitz, 1933, 1934] suggested the spherically symmetric potential to ex-

tend until the boundary of atomic polyhedron. The wave functions in solid is then expressed

as Bloch sum of eqn. (2.26)

ψj(k,r) =
∑
R

eik·R
∑
lm

bjklmθ(r−R)ψl(E, |r−R|)ilY m
l (r̂−R) (2.28)

where θ is unity inside atomic sphere and zero outside. Though this “cellular” method

turned out to be too tough for applying boundary conditions, it gave rise to KKR (named

after Korringa, Kohn and Rostoker) (and LMTO) method and Wigner-Seitz rule of energy

band. Slater [Slater, 1937] in his Augmented Plane-wave(APW), inscribed a muffin-tin(MT)

sphere in each atomic sphere. Inside the sphere, the potential is spherically symmetric and

wave functions are expanded as Wigner-Seitz partial wave.

Korringa [Korringa, 1947], Kohn and Rostoker [Kohn and Rostoker, 1954] expand the MT

spheres similar to cellular and APW. The interstitial potential is flat and wave functions are
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expanded as phase shifted spherical wave. Boundary conditions are expressed as condition

for self-consistent multiple scattering between the MT spheres. Andersen[Andersen, 75]

linearizes this method which is one of the most used method of solving the KS equation. I

have used LMTO method in my work, and the method has been discussed in detail in next

section. §2.4.21.

2.4.2 KKR-ASA

We will start from an energy dependent orbital

χlm(E, r) = ilY m
l


ψl(E, r) + pl(E)

( r
S

)l
r < S(

S

r

)l+1

r > S
(2.29)

where ψl(E, r) is the solution of eqn. (2.27) and S is the radius of atomic sphere. This muffin-

tin orbital(MTO) is regular, continuous and differentiable in all the space. The potential

function pl(E, r) and normalization of ψl(E, r) requires continuity and differentiability at the

sphere i.e.

pl(E) =
Dl(E) + l + 1

Dl(E)− l
(2.30)

where

Dl(E) =
S

ψl(E, S)

∂ψl(E, r)

∂r

∣∣∣∣ r = S (2.31)

is the logarithmic derivative function.

The tail of the orbital, (
S

r
)l+1 is the solution of Poisson’s equation ∇2X = 0, i.e. has

zero kinetic energy. So, the tail centered at R may be expanded around the origin in terms

of phase shifted spherical harmonics, yielding,

∑
R6=0

eik·R
(

S

|r−R|

)l+1

ilY m
l (r̂−R) =

∑
l′m′

−1

2(2l′ + 1)

( r
S

)l′
il

′
Y m′

l′ (r̂)Sk
l′m′,lm (2.32)

1This and later discussion on LMTO is based on [Skriver, 1984]
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where Sk
l′m′,lm is the canonical structure constant, converges inside the sphere of nearest

neighbor.

The first term of MTO ilY m
l (r̂)ψl(E, r) is already a solution of eqn. (2.27) and is the

correct one-center expansion at the origin. For any other sphere, therefore, the term is∑
lm

ajklmi
lY m
l (r̂)ψl(E, r) (2.33)

provided tails from all other sphere cancel the term∑
lm

ajklmi
lY m
l (r̂)pl(E)

( r
S

)l
(2.34)

where ajklm is the expansion coefficient of MTO. From eqn. (2.32), the condition for this tail

cancellation is ∑
lm

[
Pl(E)δll′δmm′ − Sk

l′m′,lm

]
ajklm = 0 (2.35)

where Pl is defined as

Pl(E) = 2(2l + 1)
Dl(E) + l + 1

Dl(E)− 1
(2.36)

Eqn. (2.35) is tha KKR-ASA equation which gives solution for eigenvectors ajklm when

det
[
Pl(E)δll′δmm′ − Sk

l′m′,lm

]
= 0 (2.37)

This is the secular determinant of KKR-ASA.

2.4.3 Muffin Tin Orbitals

The basic assumption of Muffin-Tin(MT) orbital is that in the neighborhood of an ion-core

the potential seen by the electron in a solid is not very different from that of the atomic

ion-core. This neighborhood is spherically symmetric with radius S centered at R. In the

interstitial region the potential is flat, called muffin-tin potential(VMTZ).

For one atom per unit cell, the effective potential is

VMT (r−R) =

{
v(|r−R|)− VMTZ r 6 S

0 r > S
(2.38)
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is the Muffin-Tin Potential where R and r are the positions of the ion-cores and an electron

respectively. The Hamiltonian is therefore given by

H = −∇2 +
∑
R

VMT (|r−R|)− κ2 + E (2.39)

where κ is the kinetic energy in the extended region, κ2 = E−VMTZ . we solve the eqn. (2.27)

numerically to obtain the radial part ψl(E, r)

ψL(ε, κ, r) = ilYL(r̂)

{
ψl(ε, r) + κcot(ηl(ε))jl(κr) r > S

κnl(κr) r 6 S
(2.40)

and in defining the basis set:

Figure 2.4: The muffin-tin potential

χMTO
L (ε, κ, r) = ilYL(r̂)

{
ψl(ε, r) + κcot(ηl(ε))jl(κr) r 6 S

κnl(κr) r > S
(2.41)

where S is the muffin-tin sphere radius. jl and nl are the spherical Bessel and Neumann

function, defined as

jl(κr) →


(κr)l

(2l + 1)!!
κr → 0

sin(κr + lπ/2)

κr
r →∞

(2.42)

nl(κr) →


−(2l − 1)!!

(κr)l+1
κr → 0

−cos(κr + lπ/2)

κr
r →∞

(2.43)
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which means jl is regular both at origin and at∞, where nl is regular at∞ only and diverges

at origin.

This yields a bound state envelop function which is real, and regular both inside (since

jl(κr) is regular at origin) and outside(since nl(κr) is regular at infinity) the sphere. The

inclusion of jl(κr) in the single particle basis set includes the effect of neighbours so that the

minimal basis set is capable of describing the full system. Anderson’s method of linearization

[Andersen, 75; Andersen et al., 1987] shows that the basis can be written as

χαRL = φRL(rR) +
∑

φ̇αR′L′(r′R)hαR′L′,RL (2.44)

where φ̇αR′L′(r′R) are linear combination of φ and φ̇, given as

φ̇αR′L′ = φ̇R′L′ + φR′L′oα (2.45)

where oα is overlap matrix and Hamiltonian matrix hα is defined as

hα = Cα − εν + (∆α)1/2 Sα (∆α)1/2 . (2.46)

Cα and ∆α are the potential parameters defined as

Cα = εν −
Pα(εν)

Ṗα(εν)
, (∆α)1/2 =

1

Ṗα(εν)
(2.47)

These are called band center and band width respectively.

Each set of α is also characterized by screening parameters, found numerically by Ander-

sen and Jepsen [Andersen and Jepsen, 1984]. The site independent constants are

α =


0.3458 l = 0 (s)

0.0530 l = 1 (p)

0.0107 l = 2 (d)

 (2.48)

LMTO, together with this screening parameters are called tight-binding (TB)-LMTO sets.

Also, for the self consistency to achieve, a correction term, named combined correction is

attached. The corresponding (corrected) Hamiltonian is given by

H = Cα + (∆α)1/2 Sα (∆α)1/2 − (κ2 + v0)∂κ2h
α (2.49)
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2.5 Recursion Technique

von Laue’s theorem on black body [Von Laue, 1914] shows that, when heated, black bodies

take on the color characteristic of their temperature and independent of composition. It also

shows (as not by more popular Weyl’s theorem) that surface of the cavity helps damping the

electromagnetic wave exponentially with number of wavelength from the surface.

This is consistent with the concept of locality that it is independent of its surround-

ing. Friedel [Friedel, 1954] first showed the applicability of von Laue theorem in electronic

structure of surfaces. With Cyrot-Lackmann [Cyrot-Lackmann, 1967] he also calculated

the orbital projected density of states (PDOS) for various transition metals. Based on this

method of moments, Haydock et al [Haydock et al., 1972] developed the recursion method.

. The locality effect in electronic states and their accuracy via recursion method was shown

Figure 2.5: Graphical representation of chain model.

by Haydock and Kelly [Haydock and Kelly, 1973]

Recursion technique is based on the fact that any quantum-mechanical model can be

transformed in one or more solvable chain model. The chain model is specified by a sequence

of orthonormal orbitals of {un} and two sets of real parameters {an} and {bn} as shown in

Figure 2.5 which describes the action of the Hamiltonian on the orbitals is given by three

term recurrence relation:

Hun = αnun + βn+1un+1 + βnun−1 (2.50)

where u1, u2 · · ·un, · · · are successively delocalized and u−1 is zero.
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It can be realized that αn is the self-interaction term and βn±1’s are nearest neighbour

hopping term. We can directly solve this taking {α, β} as parameters using continued fraction

as given in eqn. (2.53).

Lanczos [Lanczos, 1950] proposed an asymmetric version of eqn. (2.50) to solve the eigen-

value problem numerically. He tridiagonalized the matrix and iteratively obtained the se-

quence {α, β}. A schematic diagram of recursion using Lanczos’s method is shown in Fig-

ure 2.6

Formally the recursion starts with the initial condition : u1 = |0〉 and the subsequent

members of the basis are recursively generated :

un = Hun−1 − αn un−1 − β2
n un−2

with αn = (un, Hun)/(un, un) and β2
2 = (un, un)/(un−1, un−1)

The recursion procedure tridiagonalizes the Hamiltonian. This allows us to obtain a

representation of the resolvent of the Hamiltonian G(z) = (zI−H)−1 as a continued fraction

:

< 0|G(z)|0 >=
1

z − α1 −
β2

1

z − α2 −
β2

z − α3 − . . .

(2.51)

2.6 Augmented space formalism

2.6.1 The Configuration Space

Let us first start with clarifying the mathematical concept of the configuration space of a

set of random variables. Depending on the nature of random variables, it assumes different

values for different circumstances. The set containing all possible values that the random

variables assume is called the configuration space of those random variables. If there are N

independent binary random variables, then each random variable assumes two values. The

set of all possible arrangements of these N variables contains 2N sequences and hence the

dimension of the space in this case is 2N . The idea will be more clear if we take a particular
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Inputs

n = 1, A = |1〉, B = C = 0; β1 = 1

B = H · A

A† ·B = A† ·H · A = αn

B = B − αnA− β2
nC

B† ·B/A† · A = β2
n+1

C = A;A = B,B = 0

converged??

n = n+ 1

output

{α, β}

stop
yes

no

Figure 2.6: Scheme of recursion

example of the Ising model. This model consists of a set of spins {σR} arranged on a discrete

lattice labeled by {R}. Each spins can have two possible states or configurations : | ↑R〉 and

|↓R〉. For a single lattice site it only occupied by either | ↑R〉 or |↓R〉, i.e the configuration

space in this case is [(| ↑R〉), (| ↓R〉)]. Let us call this space φR. Now if we consider there

are only two lattice sites, then possible distribution of spins in this two sites are [(|↓1〉,|↓2〉),
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(|↓1〉,| ↑2〉), (|↑1〉,| ↓2〉), (|↑1〉,|↑2〉)], which is the configuration space for the sites with two

random spins. The set of N-spins then have 2N possible configurations, each of which can

be written as a sequence of p-up states and (N-p) down-states. The number (N-p) is defined

as the cardinality of the configuration and the sequence {C} of sites {Ri1, Ri2, Ri3, . . . RiNp
}

where the down states sit is called the cardinality sequence of configuration. For example

take a particular configuration of 6-spins {↑1 ↓2 ↑3 ↓4 ↓5 ↓6}. It has a cardinality 4 and a

cardinality sequence {2 4 5 6}. Another configuration {↓1 ↑2 ↑3 ↓4 ↓5 ↓6} also has cardinality

4 but its cardinality sequence is {1 4 5 6} which is distinct from the previous one. For a set

of N-spins, the configuration space Φ is of rank 2N and can be written as the direct product

of the configuration spaces of individual spins

Φ =
⊗∏
R

φR

It is quite straight forward to generalize these ideas when random variables assumes more

then two values. The configuration of an individual random variables can be labeled as |κR〉
where κR = 1, 2, . . . . . . , n. The rank of φR is now n. Also the set of N-variables will have nN

possible configurations.

2.6.2 Augmented space formalism

The augmented space method was first introduced by Mookerjee is a feasible technique for

carrying out configuration averaging in disordered systems. Here we shall discuss briefly

about this formalism. Let us consider a set of independently distributed binary random

variables {nR} with probability densities pR{nR} and assume that the pR{nR} has finite mo-

ment of all order. Clearly it is a reasonable assumption for almost all physical distributions.

Since probability densities are positive definite functions therefore it can always be possible

to express them as spectral densities of positive definite operator NR as:

pR(nR) = − 1

π
=m

[
〈↑R |(zI−NR)−1| ↑R〉

]
(2.52)

where z → nR + i δ ; δ → 0, and | ↑R〉 is the average state defined in such a way that for any

related quantity containing nR, 〈↑R |η| ↑R〉 gives average value of η
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Since the resolvent of NR (zI −NR)−1 is Herglotz, and pR{nR} is assumed to be such

that it has finite moment of all order exists, so one can expand it as a continued fractional

form,

pi(ni) = − 1

π
=m

1

z − α0 −
β2

1

z − α1 −
β2

2

. . .

(2.53)

For a binary distribution, if nR takes the value 0 and 1 with probabilities x, y = (1− x)

then pR(nR) = xδ(nR − 1) + xδ(nR) we have : α0 = x, α1 = y and β1 =
√
xy, and a

representation of NR is (
x

√
xy

√
xy y

)
In general if nR takes k different values with probability xk , then the configuration space

is spanned by k states : |k〉 which are the eigenstates of NR with eigenvalue k. In that

case the average state |∅R〉, which is the equivalent of | ↑R〉 is
∑

k

√
xk|k〉 where xk is the

probability of the variable NR to take the value k. The other members of the countable basis

|n〉 may be obtained recursively from the average state through :

|0〉 = |∅R〉

β1|1〉 = NR |0〉 − α0|0〉

. . . . . . . . . . . .

βn|n〉 = NR |n− 1〉 − αn−1|n− 1〉 − βn−1|n− 2〉

In this basis, the operator NR thus has the tridiagonal form,

α0 β1 0 0 0 . . .

β1 α1 β2 0 0 . . .

0 β2 α2 β3 0 . . .

0 0 β3 α3 β4 . . .

. . . . . . . . . . . . . . . . . .


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We can see that there is a close relationship between the above procedure and the recursion

method described in the previous chapter. This is not surprising, since the projected density

of states and the probability density are both positive definite and integrable functions. and

in both the cases finite moments to all orders exists.

2.6.3 Augmented Space Theorem

The problem addressed involves the configuration averaging of a function of many indepen-

dent random variables. e.g. � f({nR}) � where R labels a set of lattice points. The first

step is to associate with each random variable nR an operator NR such that the spectral

density of this operator is the probability density of the random variable :

p(nR) = −(1/π)〈↑R |(nRI− NR)−1| ↑R〉

Also to each variable nR there is associated a configuration space φR spanned by the states

{| ↑R〉} then the augmented space theorem states that the average of any physical quantity

f(nR), which is a function of the set of random variables {nR} is given by

� f({nR})�= 〈∅|̃f({NR})|∅〉 (2.54)

where f̃({NR}) is an operator which is a functional of {NR} and has the same form as

function f({nR}) of nR has. Further, |∅〉 =
∏⊗

R | ↑R〉 is the average configuration state in the

product space Φ =
∏⊗

R φR. Therefore information about all possible configurations of the

disordered system with random variables nR are kept in the product space Φ. The statement

of the theorem will be clear if we see the following mathematical steps.

Let us start with a function f(nR) of a single random variable nR. The generalization for

a function of the set of many random variables is quite straight forward. The average value

of f(nR) can be expressed as:

� f(nR)� =

∫ ∞
−∞

f(nR) pR(nR)dnR

= − 1

π
=m

∫ ∞
−∞

f(nR)〈↑R |(nRI −NR)−1| ↑R〉dnR
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Since the eigen vectors of the operator NR on the configuration space is a complete set, we

can write

� f(nR)� = − 1

π
=m

∑
k

∑
k′

∫ ∞
−∞

f(nR)〈↑R |k〉〈k|(nRI −NR)−1|k′〉〈k′| ↑R〉dnR

But (nRI −NR)−1 is diagonal in the eigen basis of NR and is equal to
δkk′
nR−k

, so

� f(nR)� =
∑
k

∫ ∞
−∞

f(nR)〈↑R |k〉
[
− 1

π
=m(nR − k)−1

]
〈k| ↑R〉dnR

= 〈↑R |
∑
k

|k〉
∫ ∞
−∞

[f(nR)δ(nR − k)dnR] 〈k| ↑R〉

= 〈↑R |{
∑
k

|k〉f(k)〈k|}| ↑R〉

(2.55)

Now
∑

k |k〉f(k)〈k| is nothing but the spectral representation of the functional f̃(NR) of the

operator NR constructing by simply replacing the variable nR with the associated operator

NR in f(nR). Hence

� f(nR)� = 〈∅R|f̃(NR)|∅R〉 (2.56)

In general if there are independent random variables {nR} involved then the joint prob-

ability distribution is given by :

P (nR1 , nR2 , . . . nRi
. . .) =

∏
i

pi(nRi
)

Proceeding in the same way we shall get average of functions of the set of random variables

as.

� f({nR})�= 〈∅|f̃({ÑR})|∅〉

The operator ÑR are built up from the operators NR as :

ÑR = I⊗ I⊗ . . .⊗NR ⊗ I⊗ . . .

and |∅〉 is the average state in the full configuration space Φ.

37



Augmented space formalism

Clearly this is a very powerful theorem as it reduces the problem of configuration aver-

aging to just a calculation of a spatial matrix element of an operator in the configuration

space constructed according to the given prescription above by using probability distribu-

tion of the random variables. One can visualize in a way that the space where disordered

function or operators are defined is extended to a bigger space by including the configuration

space and in this enlarge space functions or operators are ordered one. In this formalism

any approximation has not yet been done so far for averaging , therefore the expressions

are exact. Also the formalism preserves all intrinsic properties of the function for example

in case of Green’s function Herglotz properties are preserved which ensures positive density

of states. One of the main advantage of this formalism is that we can generalize it also

for a system with correlated random variables. In practice there are lots of alloys where

this kind of randomness exists which comes mainly due to the different chemical affinities of

the constituent atoms. Formulation and use of generalized version of this formalism will be

discussed in our subsequent chapter. In the following section we shall discuss how to perform

configuration averaged electronic structure calculations for a real system using augmented

space formalism.

2.6.4 Augmented space recursion in TB-LMTO formulation

We have already showed in our previous section that the augmented space theorem maps a

disordered operator described in a space on to an ordered function in the augmented space.

For a real physical system the disordered Hamiltonian defined in a real Hilbert space maps

onto the configuration space Ψ which is nothing but the direct product of the real Hilbert

space and the configuration space of the random variables. i.e. Ψ = H ⊗ ⊕ If the binary

disordered system consisting of N number of sites then the dimension of Ψ is N × 2N . For

the calculation of real binary disordered alloy using TB-LMTO method, we first need to

express the TB-LMTO Hamiltonian in the augmented space Ψ.

In terms of potential parameter and screened structure matrix, up to the second-order
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TB-LMTO Hamiltonian in the most localized β representation is expressed as:

H = Eν + h− hoh (2.57)

with h =
∑
ν

(Cν − Eν)Pν +
∑
νν′

∆1/2
ν Sνν′∆

1/2
ν′ Tνν′

where ν, ν ′ are the composite indices of the position(R) and orbital(L) quantum numbers

and Pν = |ν〉〈ν| , Tνν′ = |ν〉〈ν ′| are projection and translation operators respectively in the

Hilbert space spanned by the tight binding basis {|ν〉}. Now if we only consider diagonal

disordered then C, ∆, and o are random at each site and one can express them in terms of

the binary random variables nR as :

C̃ν = CA
ν nR + CB

ν (1− nR) = CB
ν + δCνnR

˜∆1/2
ν = (∆A)1/2

ν nR + (∆B)1/2
ν (1− nR) = (∆B)1/2

ν + δ∆1/2
ν nR

õν = oAν nR + oBν (1− nR) = oBν + δoνnR

where δCν = CA
ν − CB

ν and so on

The representation of the Hamiltonian in the augmented space can be obtain simply by

replacing the local site occupation variable {nR} by corresponding operator {NR}. Hence

the form of the first order Hamiltonian in the augmented space is

H̃ =
∑
ν

(CB
ν Ĩ + δCνN

R)⊗ Pν

+
∑
νν′

[(∆B)1/2
ν Ĩ + δ∆1/2

ν NR]Sνν′ [(∆
B)

1/2
ν′ Ĩ + δ∆

1/2
ν′ N

R]⊗ Tνν′ (2.58)

We have already shown that in {| ↑R〉} basis NR has the representation of

NR = xPR↑ + yPR↓ +
√
xy(T R↑↓ + T R↓↑ ) (2.59)

where PR↑ = | ↑R〉〈↑R | and T R↑↓ = | ↑R〉〈↓R | are the projection and transfer operator respec-

tively in the configuration space Φ.

Now replacing the form of NR in eqn. (2.59) in the Hamiltonian in eqn. (2.58) we get the

Hamiltonian operator in the enlarge space (augmented space)spanned by the basis {|ν〉⊗| ↑R
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〉 }. Using this Hamiltonian we perform the recursion process in the augmented space

and calculate the configuration averaged Green’s function as single element of the Green’s

function in this enlarge space.

2.6.5 Self Consistency between TB-LMTO and ASR

In this section we shall describe a fully self consistent scheme to perform first principle

electronic structure calculation for the disordered alloy by using TB-LMTO and ASR. The

whole scheme is divided into two parts. First we determine the structure constant matrices

S̄ for a given system. The canonical structure matrices are calculated in the same way as

the LMTO-ASA doses, that is expanding the tail of the envelop function at site R around

the other site R′, which are nothing but the expansion coefficient of that expansion. From

this canonical structure matrices S0 we obtain the structure matrices for the tight-binding

representation using the same mixing parameter α by which LMTO-ASA reduces to its

most localized representation via the transformation S̄ = S0(I − ᾱS0)−1. The values of

ᾱ were found to be independent of structure and are given for s, p, and d electrons by

ᾱs = 0.3485, ᾱp = 0.05303 and ᾱd = 0.00107. Since structure matrices depends only on

the position of the atom and not the type of the atom, it does not change in the total self

consistency process. Now to construct the Hamiltonian we need potential parameters C̄l, ∆̄l

in the most localized basis of the LMTO. These are obtained from the orthogonal potential

parameters Cl, ∆l, αl via the relation

C̄l − El
Cl − El

=
∆̄l

∆l

= 1− (αl − ᾱl)
Cl − El

∆l

(2.60)

Cl, ∆l, αl are obtain by solving Schrödinger equation inside the Wigner-Sitz sphere for each

type of atom. This part is called the atomic part and we treat this part of the problem in the

same way as k-space LMTO-ASA formalism does. That is we use the same exchange and

correlation term as one uses in LMTO-ASA formalism. The potential and the corresponding

potential parameters inside the Wigner-Sitz sphere can be uniquely determined from the

given occupation numbers of each local band, first and second order moment of the density

of states relative to Eν and the logarithmic derivative of the orbital wave function at the

sphere boundary. The spherical averaged charge density inside a WS sphere can be expressed
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in terms of the radial part of the Schrödinger equation inside the sphere and the moments of

the local density of states. We choose the potential to be zero at the sphere boundary and

corrected the total energy and potential by adding Madelung term while constructing the

Hamiltonian. Starting from a guess charge density we made the local density potential and

φν(r), ·φν(r) are calculated to the given logarithmic derivative. Then we construct a new

charge density by occupying the wave functions according to the moments and iterate this

process until the self consistency is achieved in the atomic sphere. Eν is chosen to be such

that the first moment of the density of state for the occupied part of the band is always zero.

To start the self-consistency process, we give reasonable guess for the occupation, second

moment and logarithmic derivatives and find nearly orthogonal potential parameters for

each type of atom from the atomic part. then using eqn. (2.60) we calculate C̄l, ∆̄l. Using

C̄l, ∆̄l and the structure matrix S̄ we construct the augmented space Hamiltonian in the

same procedure discussed in the previous section. Now we solve the eigen value problem of

the disordered Hamiltonian by using recursion technique in the augmented space and obtain

the local density of state(LDOS) for each type of atom and for each orbital. From LDOS we

calculate new Eν , moments for each band of each type of atom. The logarithmic derivatives

are calculated from the Eν and old potential parameters. Finally we supply all these moment

an logarithmic derivative in the atomic part for the calculation of new potential parameter

which will be used in the next iteration. We iterate this process until desire self-consistent

values of moment and the logarithmic derivative achieved.

2.6.6 Problem of charge transfer, Madelung potential and energy

Since the constituent atoms in an alloy are different, there should be charge transfer between

them in the alloying process and the neutral atomic spheres are become charged. As a result

there Madelung energy become a significant part of the total energy. But in this case

Madelung potential is very difficult to define as it depends upon the far environment in a

given configuration.

In a single site CPA Johnson et all [Johnson et al., 1986] assumed that all atom of the

same kind have the same net charge QA or QB which does not affected by the environment.
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As a result

Qi = nRQA + (1− nR)QB

which follows on account for overall charge neutrality that

〈QRQR′〉 = 〈QR〉〈QR′〉 = 0

and hence Emad = 0. This assumption works in many cases but for systems like CuZn

alloy where the charge-transfer plays a significant role, it produces qualitatively incorrect

results. For a mean-field coherent potential approach, Kudrnovský and Drchal [Kudrnovský

and Drchal, 1990] have suggested using different atomic radii for the constituents in such

a way that average total volume is conserved and the overlap is below the threshold value

(15%), one can make these spheres approximately neutral and therefore ignore the Madelung

contributions. In this procedure varying the ratio of the atomic spheres r = RA/RB is

very cumbersome, also Ruban and Skriver [Ruban and Skriver, 2002] have shown that local

environmental effects (beyond the CPA) destroys the strict charge-potential alignment, and

hence the possibility of choosing electroneutral atomic spheres by a single ratio r. In our self

consistency process we have chosen the procedure namely screened impurity model proposed

by Ruban and Skriver [Ruban and Skriver, 2002]. According to their suggestion the net

charge of the alloy component embedded in the effective CPA medium is completely screened

by the first shell of its surrounding effective atoms and the screening charge is uniformly

distributed among all the Z1 nearest neighbor atoms. The Madelung potential of the impurity

atom is

V i
M = −e2Qi

R1

where, i = A or B (labels the constituents of the alloy), Qi is the net charge of the alloy

component i in its own atomic sphere of radius Ra and R1 is the radius of the first co-

ordination shell. Consequently the Madelung energy is given by :

Ei
Madelung = −β∗e2Q

2
i

R1

(2.61)

where

β∗ = 1−
4∑

m=1

nm
2%m
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with %m is the ratio of the radius of the m-th and 1-st coordination shell. In case of BCC

and FCC structure the values of β∗ are 0.69155 and 0.65735 respectively.

2.6.7 Termination Scheme

The continued fraction eqn. (2.53) is terminated via several schemes once {an, βn} is con-

verged. Convergence is necessary to represent the densities of state and Van Hove singular-

ities of the exact Hamiltonian.

For single band of states, it was found that the {αn, βn} rapidly convergent to some

(α, β). So for n ≥ N we can set αn = α and βn = β . We can sum up the remainder of the

continued fraction analytically as:

T (E) =
β2
n

E − αn −
β2
n+1

E − αn+1 − . . .

' β2

E − α− β2

E − α− . . .

=
β2

E − α− T (E)
(2.62)

⇒ T (E) =
1

2

(
E − α−

√
(E − α)2 − 4β2

)
(2.63)

T (E) is called the quadratic terminator and was proposed by Haydock [Haydock et al.,

1972]. In more complex systems involving a number of isolated bands (For example, semi-

conductors and transition metal compounds), the quadratic terminator was found to be

unsuitable and the quadrature method proposed by Nex [Nex, 1978] was found to be more

useful. It has been found that given the band-edges and the truncated continued fraction, the

analytic terminator proposed by Haydock and Nex [Haydock and Nex, 1984] and later im-

proved by Luchini and Nex [Luchini and Nex, 1987] as compared to the quadrature method.

Here is the outline of the analytic terminator schemes for a solid with a single band. A set

of coefficients {αn, βn} is first generated recursively from the three term recurrence relation.

We generate such coefficients up to n = n2 steps. We now generate orthogonal polynomials

of the first and second kinds: Pn(z) and Qn(z) for the above recurrence relation. These are

the solutions of:
Pn+1 (z) = (z − αn)Pn (z)− β2

nPn−1 (z)

Qn (z) = (z − αn)Qn−1 (z)− β2
nQn−2 (z)

}
(2.64)
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with P−1=Q−1=0, P0=Q0=1

We then locate, from the generated continued fraction coefficients (n<n2), the lower (left)

band edge a, the bandwidth r and the weight w. From this we construct a model Herglotz

function with square-root band edge singularities:

F (z) = 8w
[
z − (a+ r/2)−

√
(z − a) (z − a− r)

]
/r2 (2.65)

We now run the recursion again with the Hamiltonian replaced by z, the state vectors by

polynomials described by equation (2-21), the inner product by a union of Gauss-Chebyshev

quadrature:

f (z)� g (z) =
n∑
i=1

Ωif
(
α

′

i

)
g
(
α

′

i

)
(2.66)

where,

Ωi =
πw

(n+ 1) sin2 θi

α
′

i = a+ (1− cos θi) r/2

θi =
iπ

n+ 1

This generates a set of recursion coefficients {cn, dn} and a set of mutually orthogonal poly-

nomials {Rn (z)} and {Sn (z)}.The terminator is then given by,

T (z) =
Sn−2 (z)− F (z)Rn−1 (z)

d2
n−1 (Sn−3 (z)− F (z)Rn−2 (z))

(2.67)

Again, from the fact that Rn and Sn are polynomials of order n and F (z) is a Herglotz

function, it follows immediately that the terminator is itself Herglotz. The Green function

is given by,

G (z) =
Qn−2 (z)− β2

n−1T (z)Qn−3

Pn−1 (z)− β2
n−1T (z)Pn−2

(2.68)

Using very similar arguments as before, the Green function is Herglotz if T (z) is Herglotz.

It is easy to understand that in a chain with constant parameters if one appends a constant

terminator with infinite band-width then the spectrum will consist of delta functions. When

the band edge mismatch is reduced, these delta-functions broaden into Lorentzians and finally
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only show up as oscillations superimposed on the semi-elliptic local density of states resulting

from such constant coefficients. The parameters αn and βn represent the potentials on the

one-dimensional chain and one can regard the eigenstates of the computed chain as being

initially unable to tunnel out through the potential barrier of the terminator. As the height of

the barrier is reduced, they become resonances superposed on the local density of states. The

situation is analogous to the coherent reflection of the eigenstates by the step function in the

potential represented by the discontinuous join to the terminator. The method of Luchini

and Nex suggests linear interpolation between the computed and the analytic terminator

coefficients to reduce the spurious oscillations arising out of this coherent reflection. The

method is analogous to splicing as opposed to butt-joining pieces of wood.

We start with computed continued fraction coefficients αn, βn up to n2 levels and with

terminator coefficients αtn and βtn. The method of Luchini and Nex now suggests to linearly

interpolate between the computed coefficients and that of the analytic terminator in the

following manner:

αn =


αn n ≤ n1

[αn (n2 − n) + αtn (n− n1)] / (n2 − n1) n1 ≤ n ≤ n2

αtn n2 < n

where n1 is the start and n2 is the end of the interpolation. Similarly βn can be obtained by

replacing αn with βn in the above expression. Again, such a termination procedure retains

the Herglotz properties of the Green function.

2.7 Effective Pair Interaction

In order to understand the onset of ordering in random alloys,one needs a derivation of the

lowest configurational energy for a specified alloy system. Models have been set up describing

configurational energies in terms of effective multi-site interactions, in particular EPE [Go-

nis et al., 1987] . Within this approach, the analysis of alloy ordering tendencies and phase

stability reduces to accurate and reliable determinations of these EPE. Traditionally there

have been two different approaches for obtaining the EPE. The first approach is to start
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with the electronic structure and total energy determinations of ordered super-structures

of the alloy and to use these to invert the relationship between total energies and EPE to

obtain the latter. This is the Connolly-Williams method [Connolly, 1983]. The alternative

approach is to start with the disordered phase,setup a perturbation in the form of concentra-

tion fluctuations associated with an ordered phase and study whether the alloy can sustain

such a perturbation. This approach includes the Generalized Perturbation Method (GPM)

[Ducastelle, 1976], the embedded cluster method(ECM) [Gonis et al., 1987] and the concen-

tration wave approach [14].We shall follow this alternative viewpoint. In this discussion, we

will consider two different approach of this alternative method

i. GPM method

ii. orbital peeling introduced by Burke [Burke, 1976]

2.7.1 Generalized Perturbation Method

In a homogeneously disordered alloy AxB1−x with each site occupied by either A or B pro-

portional to there concentration. We define occupation variable nR which randomly takes

value 0 or 1 if the site R is occupied by A or by B with � nR �= x The total internal

energy of a particular configuration is

E = V (0) +
∑
R

V
(1)
R δnR +

∑
R

∑
R 6=R′

V
(2)
RR′δnRδnR′ (2.69)

with δnR = nR − x and � δnR �= 0. If the configuration is homogeneously disordered

then it immediately follows that � E �= Edis = V (0) . From the above definition we can

interpret the other two expansion terms as follows:if EI is the configuration averaged total

energy of a configuration in which any arbitrary site labeled R is occupied by an atom of

the type I and the other sites are randomly occupied,and EIJ is the averaged total energy

of another configuration in which the sites R and R′ are occupied by atoms of the types I

and J,respectively, and all other sites are randomly occupied, then from 2.69 we see:

V
(1)
R = EA − EB, V

(2)
RR′ = EAA + EBB − EAB − EBA (2.70)
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The single site energy V
(1)
R corresponds to inhomogeneous disorder and V

(2)
RR′ , the pair

interaction energy gives the ordering energy.

While this method is very fast and computationally less demanding, it has a major

drawback in the mode of calculating V (2): the terms Eij’s are very large and comparable in

magnitude. Hence, there difference is very small; leading to a numerical instability to the

fact that the difference goes smaller than the error involved in the measurement of Eij. This

problem is overcome using the Orbital Peeling method discussed below(§2.7.2).

2.7.2 Orbital Peeling

Orbital peeling technique, first introduced by Einstein and Schrieffer [Einstein and Schrief-

fer, 1973] was generalized by N. R. Burke [Burke, 1976] to take very small energy difference

into account. We want to calculate the energy difference between two systems: 1) when

the adatoms are far apart (Figure 2.7(a)) and 2) when the adatoms are close enough (Fig-

ure 2.7(b)). The interaction energy is calculated through density of states, which we define

as

f(Ek) =
1

2πi

∮
C
f(E)Tr[E −H]−1dE (2.71)

where C is the contour of integration enclosing all poles below EF

So, we calculate the one-electron eigenvalue (Ei) and the total energy will be given as

UTOT =
∑

Ei − Ues

for states below fermi level, EF and Ees is the electrostatic interaction (inter-electronic and

inter-ions). The required energy difference is given by

∆UTOT = ∆
(∑

Ei

)
−∆Ues (2.72)

If we rewrite in terms of “resolvent operator” using
∫ Ef

−∞ = 1
πi

∮
then, we have a complex N

defined as

N = Tr[EI −H]−1 (2.73)
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(a)

(b)

Figure 2.7: Interaction between adatoms. (a) when adatoms are far away and (b) when

adatoms are close.

We get the electronic contribution to the structural energy as when the electrons are far

apart is

U1 =

∫ E
(1)
F

−∞
EN1(E)dE (2.74)

and when the electrons come together, we have a new DOS, (N2) and the new energy is

given by

U2 =

∫ E
(2)
F

−∞
EN2(E)dE (2.75)

given
∫ E(2)

F

−∞ N2(E)dE =
∫ E(1)

F

−∞ N1(E)dE the interaction energy is given by:

W = U2 − U1

=

∫ EF

−∞
(E − EF )∆NdE (2.76)

where ∆N = N2−N1. Now, we notice that when the systems are far apart as in Figure 2.7(a),

each block has 1 atom, when they are close, as in Figure 2.7(b) one block has 2 atom when

the other has none. Hence we can define

N1 = 2Tr[EI −H1]−1

N2 = Tr[EI −H2]−1 + Tr[EI −H0]−1 (2.77)
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Following the identity from [Einstein and Schrieffer, 1973]

Tr[EI −H]−1 =
∂

∂E
log det[EI −H] (2.78)

which yeilds

∆N =
∂

∂E
log

det[EI −H2]

det[EI −H1]

det[EI −H0]

det[EI −H1]
(2.79)

The structure of the Hamiltonian is given by

H2 =


EA V12 · · · Ṽ2

V21 EA · · · Ṽ1

...
...

...
...

V2 V1 · · · H0

 H1 =


EA · · · Ṽ1

...
...

...

V1 · · · H0

 (2.80)

The dimension of the matrix depends on the orbital. As for d orbital, H2 is an matrix of

(5N + 10) as first 5 rows are for 1st adatom, next 5 rows are for 2nd ad atom and 5N rows

for H0, the substrate. Similarly, rank of H1 is 5N + 5. Evidently, V12 = V21 as they are the

interaction between each other ; V1 and V2 are interaction with substrate.

From eqn. (2.80), we see that [EI −H1] is a submatrix of [EI −H2] and [EI −H0] is a

submatrix of [EI −H1], we have

det[EI −H2] = det G −1
2 det[EI −H1]

det[EI −H1] = det G −1
1 det[EI −H0] (2.81)

where

(G )αβ = 〈ai, α|[EI −Hi]
−1|ai, β〉 (2.82)

Substituting above results in eqn.(2.79), we get

∆N =
∂

∂E
log

detG1

detG2

(2.83)

which is the working equation of orbital peeling technique.

The physical meaning of this equation is quite clear: “log det G2” is the energy to pull

one of the two isolated adatom of system (Figure 2.7(a)) and “log det G1” gives the energy

to put it in a isolated place as in (Figure 2.7(b)).
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2.8 Frozen Spin Phase

A good percentage of my work is based on frozen spin phase, popularly known as spin glass

phase. The theory of Spin glass was first systematically documented in seminal paper of

Edward and Anderson [Edwards and Anderson, 1975] showing that this phase is essentially

due to the competitive interaction between ferro and antiferromagnetic ordering given by

the Hamiltonian

HJ = −
∑
<i,j>

Jijσiσj − h
∑
i

σi (2.84)

Two distinctive features of this phase are

frustration The Hamiltonian (2.84) exhibits frustration: no spin configuration can simul-

taneously satisfy all couplings. If a closed circuit C in the edge lattice satisfies the

property ∏
<i,j>∈C

Jij < 0 (2.85)

then the spins along it cannot all be simultaneously satisfied [Toulouse, 1977] as shown

in Figure 2.8. Anderson suggested a different formulation, namely that frustration

manifests itself as free energy fluctuations scaling as the square root of the surface

area of a typical sample. Either way, the spin glass is characterized by both quenched

disorder and frustration. Their joint presence indicates the possibility that spin glasses

might possess multiple pure thermodynamic states unrelated by any simple symmetry

transformation.

ageing Below the glass temperature Tg, the dynamic response to a small magnetic excitation

is slow, and in addition it depends on the time spent below Tg, and this phenomena is

called aging. Numerically this is measured via the zero filled time dependent suscepti-

bility (χ), where a characteristic inflection point in χ vs. ln t plot shows the existence

of glassy phase.
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Figure 2.8: A simple frustrated contour in a 2D lattice. Bonds marked “F” correspond to

ferromagnetic couplings (Jij > 0) and “AF” corresponds to an antiferromagnetic coupling

(Jij > 0). Two possible arrangement of spins at the corner sites is shown.

2.8.1 Freezing of spin

Wohlfarth [Wohlfarth, 1977] showed the freezing of spin is closely related to blocking of

superparamagnetic(SP) single domain magnetic particle in rock materials(RM). In RM, there

are 105 or more particle coupled ferromagnetically in each domain. At high temperature,

the interaction in paramagnetic and each particle posses giant magnetic moment. There are

extra energy due to anisotropy: either due to shape, crystalline or external stress. Since

no domain movement is possible, as in 1.4 on page 7. In 1949, Néel [Néel, 1949] show the

Brownian motion in magnetization direction in these SP.

For uniaxial systems, magnetization relaxes as

Mr = M0e
−t/τ (2.86)

where M0 is the full magnetization when the field is switched off and relaxation time τ is

given by

1

τ
=

1

τ0

e−KV/KBT . (2.87)

Here, τ0(≈ 10−9sec) arises due to random thermal fluctuation, K is anisotropy constant and

V is the volume of the particle. V effects the typical relaxation time τm heavily. Like for
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spherical Fe with radius 115 Å have relaxation time 1
10

sec; where under same conditions, a

particle of 150 Å will have relaxation time 109 sec [Chowdhury, 1983]. Usually a relaxation

time 102 sec is considered as criterion of stability and the corresponding barrier height is

≈ 25kBT . The corresponding temperature is “blocking temperature”.

Wohlfarth [1977] draw analogy between blocking of superparamagnetic clusters and spin

glass “freezing”. The single domain particles of SP clusters are, according to this analogy, is

equivalent to non-interacting clusters of spin glasses. The formation of these non-interacting

clusters at T � Tg is evident from the experimental deviation of χ(T ) from Currie-Weiss

behavior [Cannella and Mydosh, 1972].

2.8.2 Atomistic spin dynamics: Relaxing spins 2

Autocorrelation function is a measure of relaxation of individual spins. Above Tg, though

total magnetic moment of the system preserves, each spin changes its direction with time.

The autocorrelation function, defined as

C (t, tw) = 〈mi(tw) ·mi(t+ tw)〉 (2.88)

where tw is the waiting time, i.e. time offset between initial and final measurement; shows

how fast it “relaxes”. Since above Tg, individual spins are in dynamic motion, the average

tends to 0 in normal magnetic phases; whereas in spin glass phase, it shows a continuous

slow down in C with t and equilibrates near 1, the initial value.

Phenomenological solution of spin relaxation, given by Landau and Lifshitz [Landau and

Lifshitz, 1935] is
∂m

∂t
= −γm×B− λ

m
m× (m×B) (2.89)

where γ is gyromagnetic ratio and λ the damping constant. Gilbert extend this equation

introducing damping analogous to frictional force [Gilbert, 2004]

∂m

∂t
= −γm×B +

α

m
m× ∂m

∂t
(2.90)

2This section is based on [Hellsvik, 2010]
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2.8.3 ASD at finite temperature: Langevin Dynamics

To study the glassy phase we must include finite temperature effect as well into LLG equation

(2.90). In this situation, beside Bi and damping force, a stochastic torque will also act

on atom’s magnetic moment, which can be seen as fluctuating field bi. The fluctuation-

dissipation theorem [Kubo, 1966] shows fluctuation and damping are initially connected.

In this direction, first work is done by Brown [Brown, 1963]. He calculated Fokker-

Plank equation for stochastic LLG equation and couples α and bi to temperature T. In this

derivation, both processional and damping motion was affected by the stochastic torque.

Kubo and Hashitsume [Kubo and Hashitsume, 1970] left damping unaffected by bi. Brown

and Kubo et al derived their model for single domain magnetic particles and for single

spins. Antropov et al [Antropov, 2005] showed both formalism can be applicable to atomic

magnetic moment as well.

Kubo’s formalism yields LL equation in the presence of stochastic field(SLL)

dmi

dt
= −γmi × [Bi + bi(t)]− γ

α

m
mi × {mi × [Bi + bi(t)]} (2.91)

which is basically Langevin equation [van Kampen, 2007] with bi, a multiplicative noise

term, introduced as Langevin force.

To solve eqn. (2.91) we assume components of bi,µ where µ = x, y, z are uncorrelated and

also independent of mi. We extend ordinary differential equation(ODE) solvers to solve this

stochastic differential equation(SDE). Two solver, based on Runge-Kutta scheme, is used.

One in Euler and other is Heun’s. In both cases, time is discretized t0 < t1 < t2 < · · · tn and

also the solutions x0 < x1 < x2 < · · ·xn. The stochastic extension of Euler’s scheme is

xi(t+ τ) = xi(t) + Ai({x}, t)τ +
∑
k

Bik({y}, t)dWk (2.92)

where τ is the finite increment and dWk is the increment that replaces stochastic variable Γj

defined as dWj =
∫ τ

0
Γjdt.
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Chapter 3

Electronic structure calculation in

random alloys

This chapter is based on

Rudra Banerjee and Abhijit Mookerjee. Augmented Space Recur-

sion Code and Application in Simple Binary Metallic Alloy. Inter-

national Journal of Modern Physics C, 21(02):205, 2010.

The predictions of properties of classical and new materials such as substitutional disor-

dered alloys, their surfaces and metallic or semiconducting multilayers have great importance.

A detailed understanding based on the microscopic, parameter free approach is necessary for

future development in material science. In a solid the outer most electrons of the atoms play

an important role, as they bind each atom to it’s neighbor and determines the properties of

the resulting materials. So one of the important aim of the condensed matter theory is the

calculation of the electronic structure of solids. This is not only helpful in understanding

and interpreting experiment, but also a predictive tool of the condensed matter and ma-

terials science. In case of disordered systems the calculation of such properties are much

more difficult compared to that of the ordered system. Difficulties arises due to the involve-

ment of the random variables and we have to carry out averages for physical observables

over different configurations. In §2 we have discussed various methods used in this thesis
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and particularly the TB-LMTO-ASR method for calculation of the electronic structure of

disordered alloys. In this chapter we shall first overview some of the conventional mean field

theories for the configuration averaging. We shall also discuss their limitations and prob-

able extensions. Finally we shall discuss a fully self-consistent scheme of TB-LMTO-ASR

calculation for realistic systems.

3.1 Dealing with disorder: Different levels of approxi-

mation

3.1.1 The Rigid Band Model and The Virtual Crystal Approxi-

mation

The first attempt at the calculation of the electronic structure of disordered alloys was made

by Jones in 1934 with his rigid band model (RBM). In this crude approximation we neglect

the potential differences between alloy constituents: the electronic state of pure A metal

is identical to that of pure B and even AxB1−x alloy. The only composition-dependence

comes from number of electrons per atom of A and B [Stern, 1967]. The average number of

electron per atom n = NACA + NBCB, where NA/B is number of electron and CA/B is the

concentration of A/B determines Fermi energy and other properties [Grimvall, 1972].

Clearly, this method is only applicable when the difference in potential of A and B is

very small, and that too in limited cases. This is an oversimplified model which neglects

the difference between alloy constituents and only accounts for the number of electrons per

atom which is different for different alloys. In its time this model was a success for a very

few cases like CuNi system where potentials of constituents are nearly identical. Almost

all types of alloy the eigen value distribution is qualitatively very different from that of the

constituents materials and the model does not work.

Korringa in 1958 modified RBM to the Virtual Crystal Approximation (VCA). He as-

sumed that the potential associated with every lattice site in the alloy is same and which is
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equal to the concentration average potential 〈V 〉 of the constituents.

Valloy = 〈V 〉 = xVA + (1− x)VB

where x is the concentration of one constituent. For systems with weak scattering po-

tential and consisting of nearly equal concentration of the constituents, this model is fairly

successful. In this model the self energy consisting of only the lowest order term 〈V 〉, which

is independent of wave-vector k. Therefore the life-time of the states are infinite as in the

pure materials. Only due to the scattering of the impurities, alloys states are decay with

finite lifetime. Assuming V is very small, we get

〈ViVj · · ·Vn〉 ∼= 〈Vi〉〈Vj〉 · · · 〈Vn〉

and the Green’s function becomes

〈G (E)〉 = P (E) [1− 〈V 〉P (E)]−1 = [E −H0 − 〈V 〉]−1

i.e. the pure crystal’s Green’s function with a 〈V 〉 shift.

Despite some success, this approximation is mathematically wrong. Firstly, the self-

energy, ΣV CA = 〈V 〉 is real, independent of energy and wavevector k. So, the lifetime of the

k-state is infinite, as in pure metal, and not in alloys. Also Rayleigh-Schrödinger perturbation

theory shows, VCA can not give correct density of states. This is because of the fact that,

eigenvalue distribution of alloys are fundamentally different from pure elements and one can

not go to another by any finite number of perturbation steps [Gonis, 1992; Dargam et al.,

1997].

3.1.2 Average t-matrix approximation (ATA)

VCA can not accurately describe systems with large difference between the potential of the

constituents atoms . It also fails if there are large concentration fluctuations. In case of

small concentration one deals with averaging the scattering matrix (t-matrix) associated

with individual scatterers (potential) instead of using average potential. We can express the
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Green’s function in terms of the scattering matrix as:

G1(r − r′, t− t′) = G0(r − r′, t− t′) +

∫ t

0

dt1

∫ t1

0

dt2

∫
dr1

∫
dr2

G0(r − r1, t− t1)T (r1, r2; t1, t2)G0(r2 − r′, t2 − t′) (3.1)

where G0 is the unperturbed Green’s function and

T =
∑
i,j

Tij (3.2)

is the total system t-matrix with

Tij = Viδij + ViG0Vj(1− δij) +
∑
k

ViG0VkG0Vj + . . .

= Viδij + Vi
∑
k

G0Tkj (3.3)

Separating k = i term we can write

Tij = tiδij + ti
∑
k

G0Tkj (3.4)

ti are the single site scattering matrix and these are replaced by the average value 〈t〉.
If we considering VCA medium as the host material, then perturbation is Vi − 〈V 〉 and

correspondingly 〈t〉 becomes

〈t〉ATA =
x(εA − 〈ε〉)

1− (εA − 〈ε〉)GV CA
0

+
(1− x)(εB − 〈ε〉)

1− (εB − 〈ε〉)GV CA
0

(3.5)

with 〈ε〉 = xεA + (1− x)εB . The configuration averaged Green’s function is given by

〈G〉 = G0 +G0

[
〈t〉ATA(1−G0〈t〉ATA)−1

]
G0

Compare to VCA, ATA shows the impurity bands and k-states with finite life times [Soven,

1967].
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3.1.3 Coherent Potential Approximation

As we have mentioned before that for the disordered system the main thrust goes to obtain

the configuration averaged quantity. Also the Green’s function contains all informations

about the system. Therefor the main aim goes to the calculation of configuration averaged

Green’s function for a disordered system. In this context Soven [Soven, 1967] and Taylor

[Soven, 1967] in 1967 introduce independently the widely used widely used approximation

namely Coherent potential approximation (CPA). In case of totally random alloy their basic

idea was to obtain a translationally symmetric effective Hamiltonian (Heff ) and the repre-

sentation of it’s Green’s function Geff which are good approximation of the average Green’s

function of the random Hamiltonian. If we write the total Hamiltonian as H = H0 + V

where V =
∑

i Vi is the superposition of the real individual site potential Vi(z) then in terms

of self energy operator Σ(z) one can write the average Green’s function as:

〈G(z)〉 = 〈(z −H)−1〉 = [z −H0 − Σ(z)]−1 (3.6)

Now in a translationally invariant medium Σ(z) the total Hamiltonian can be written as

H(z) = Heff (z) + V (z)−W (z) with Heff (z) = H0(z) +W (z)

where W (z) =
∑

iWi(z) is the translationally invariant site-dependent quantities Wi(z).

Defining V(z) =
∑

i(Vi−Wi) and Geff (z) = (z−Heff )−1 we can express the resolvent G(z)

and corresponding T operator T (z) as :

G(z) = Geff [1− V(z)Geff ]

T (z) = V(z) + V(z)GeffV(z)

G(z) = Geff +GeffT (z)Geff

Clearly Geff is translationally symmetric and therefore the average G(z) becomes

〈G(z)〉 = Geff (z) +Geff (z)〈T (z)〉Geff (z)

= [1 +Geff (z)〈T (z)〉]Geff (z) (3.7)

and hence to get the average Green’s 〈G(z)〉 function as the effective Green’s function Geff (z)

i.e.

〈G(z)〉 = Geff (z) (3.8)
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We need to satisfy

〈T (z)〉 = 0 (3.9)

The self energy becomes

Σ(z) = z −H0(z)− [〈G(z)〉]−1

= z −H0(z)−Geff (z)−1{1−Geff (z)〈T (z)〉
[
1 +Geff (z)〈T (z)〉

]−1}

= z −H0(z)−Geff (z)−1 + 〈T (z)〉
[
1 +Geff (z)〈T (z)〉

]−1

= W (z) + 〈T (z)〉
[
1 +Geff (z)〈T (z)〉

]−1
= W (z) + Σ1(z)

With the help of eqn. (3.4) in the previous section we can write

〈T (z)〉 =
∑
i

〈Qi(z)〉 (3.10)

where 〈Qi〉 can be represents as

〈Qi〉 = 〈ti(z)〉

[
1 +Geff (z)

∑
i 6=j

〈Qj(z)〉

]
+ 〈[ti(z)− 〈ti(z)〉]Geff (z)

∑
i 6=j

[Qj(z)− 〈Qj(z)〉]〉

The first term of the above expression contains only the single site quantities but the second

one is kind of correlation term. In CPA The second term is neglected and therefore it

is single site approximation. But neglecting second term means that, excluding the local

environmental effect like short-ranged ordering. So in CPA 〈Qi(z)〉 becomes

〈Qi(z)〉 = 〈ti〉

[
1 +Geff (z)

∑
j 6=i

〈Qj(z)〉

]
(3.11)

So in the single site coherent potential approximation condition in eqn. (3.9) namely 〈T (z)〉 =

0 reduces to

〈Qi(z)〉 = 0 =⇒ 〈ti(z)〉 = 0 ∀i (3.12)

This condition implies that the average scattering produces on a site is zero. It is possible

to prove that this approximation preserves the analytic properties of the Green’s function
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and gives first eight moment of the density of state exactly. It is also reproduces several

limiting cases like dilute limit where concentration of one of the constituent is goes to zero

and it is exact up to first order. In the atomic limit it can be shown that the approximation

is exact up to the second order term by using the locator formalism. Using the CPA concept

Gyorffy [Gyorffy et al., 1985] apply it subsequently within the KKR method. Stocks and

Winter [Stocks and Winter, 1982] performed first charge-self-consistency calculation of KKR-

CPA. Kudrnovský [Kudrnovský et al., 1990] applied the CPA concept withing the TB-LMTO

method.

τC(ε) = Ω−1
BZ

∫
[t−1
C (ε)− G (k, ε)]−1d3ktC(ε)

CτA + (1− C)τB = τC(ε)

Calculate DOS, EF and other

yes

no

Figure 3.1: Simple flowchart for CPA.

CPA is very robust both from mathematical and physical point of view. It is able to

explain several one-electron properties of the system for considerable range. It is the best

single-site approximation available, without any doubt. But, it still posses some very serious

drawbacks. This originate from the requirements assigned to the Hamiltonian, types of

randomness and in the approximation in Green’s function itself [Yonezawa and Morigaki,

1973]. This theory fails when there exist cluster effect, or short-range ordering or off-diagonal

randomness.

3.1.4 Beyond single site CPA

Although CPA produces excellent results in many cases and no doubt it is a very good

approximation and is widely used but it has several limitations. As we have discussed before
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that being single site approximation, CPA cannot take into account the local environmental

effects and off-diagonal randomness. It also fails to describe local lattice distortions. In case

of low dimensionality for example surfaces it cannot able to produce fine structures in the

density of states. There have been several attempts by many authors to generalized this

approximation to overcome those limitations. These are basically the cluster generalization

of the CPA. Generalizing scattering t-matrix approach Nickel and Krummhansl (1971) and

Leath [Leath, 1970, 1972] tried to include all cross scattering diagrams involving two sites.

This diagram summation is extremely cumbersome and intractable for a bigger cluster. After

partitioning the system into subunits, Tsukada [Tsukada, 1972] suggested tho carry out CPA

by replacing single site by such subunits. This is the easiest way to include some of the

effects of scattering from cluster of atoms. This procedure is called the molecular coherent

potential approximation (MCPA). However in case of homogeneous disorder this violets the

lattice translational symmetry of the configuration averaged Green’s function. Butler [Butler,

1972, 1973] suggested a further approximation to overcome this difficulty. He assumed that

every cluster has a central site and the CPA equations are applied only to the central site. In

the weak scattering limit the ‘central site approximation’ produces good results. However in

the strong scattering limit the density of state becomes many-valued and negative in some

energy range and the sum rule for the integrated density of state violated. After that he

applied the the CPA equations in the boundary sites instead of central site witch also gave

unphysical results in the strong scattering limits. The traveling cluster approximation (TCA)

proposed by Kaplan and Gray [Kaplan and Gray, 1976] using augmented space formalism

discussed in §2.6, is a major breakthrough in this direction. This method based on the fact

that instead of summing all possible diagrams necessary for consistent treatment of scattering

event one should sum up certain type of diagrams so that the corresponding self energy satisfy

the condition : Im(Σ(z)) ≤ 0 for Im(z) ≥ 0 , which is necessary (but not sufficient) for

analiticity. The TCA formalism provides a consistent rule for summing such class of diagrams

so that the self energy and Green’s function with proper analytic properties can be obtain.

Also the diagrammatic consistency generates all higher order graphs associated with a given

type of scattering and includes such scattering through out the material. In the two site

version, this method not only retains the analytic properties of the Green’s function but also
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the lattice translational symmetry of the configuration averaged Green’s function, however

this method is also suffers some limitations. The method is computationally extremely

difficult for a bigger cluster size and is nearly impossible to implement for a realistic system.

3.2 ScASR: The configuration averaged method

The DFT Self-consistent ASR package was developed to handle first-principles studies of

electronic structure of systems without long-ranged lattice translational symmetry. Bulk

disordered alloys and surfaces and interfaces which are either flat, corrugated or rough fall

under this category which our formalism should be able to take care of. Lack of lattice

translational symmetry means that the standard reciprocal space techniques based on the

powerful Bloch theorem can no longer be of any use and we have to depend on alternative

techniques based purely on real space approaches. Our formalism will be a marriage of three

distinct methods which have been individually applied extensively : namely, the recursion

method (RM) of Haydock [Haydock et al., 1972, 1975], the augmented space method proposed

by Mookerjee [Mookerjee, 2003; Chakrabarti and Mookerjee, 2005] and the tight-binding,

linear muffin-tin orbitals method (TB-LMTO) [Andersen and Kasowski, 1971]. The last

mentioned provides us with a DFT self-consistent sparse representation of the Hamiltonian

in a real-space minimal basis {|RnL〉} ∈ H. Here Rn labels the sites where the ion-cores

sit and L = (`mσ) are the angular momentum indeces. For a disordered system the matrix

elements of the Hamiltonian representation in this basis are random. This representation is

then taken over by the ASR to generate a modified Hamiltonian representation in the outer

product space of H and the space C of configuration fluctuations of the random parameters.

This modified Hamiltonian represents a collection of all possible Hamiltonians for all possible

configurations of Hamiltonian representations. Once this is done the RM allows us to obtain

the matrix elements of the Green functions related to the Kohn-Sham equation for the

electronic states. The augmented space theorem (AST) [Mookerjee, 1973] relates a specific

matrix element of the Green function in the augmented space H ⊗ C to the configuration

averaged Green functions. The RM is a purely real-space based technique, and therefore

as applicable to a bulk system as one with surfaces, interfaces or extended defects. In the
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following we shall describe each of the points raised above in some detail.

As this is the main tool of my work, the algorithm is detailed in the following section.

3.2.1 The ScASR Algorithm

The full ScASR package is divided into several sub-packages. The first sub-package is the

Preparation Module. The routines are those of the LMTO47 Stuttgart code [Andersen, 75]

mostly edited in its file structure and variable names to accommodate them themselves as

variables. The Module has two branches, one each for each constituent of the alloy. Each

branch is parallely run on two different slave processors, with the results collected in a master

processor. The structure matrix is calculated in the master processor. These routines in this

Module are :

lminit This prepares the control files for the different alloy constituents,

lmhart This carries out a simple Hartree calculation and prepares the

atomic sphere radii of the constituents,

lmovl Checks the overlap between the atomic spheres,

lmes Sets up the “empty spheres” carrying charge but no ion-cores to fill

up the excess interstitial space in open lattices,

lmstr Calculates the structure matrix in the screened representation.

The Preparation Module is followed by the main ASR-module. This module is called by

the routine lmasr. This main module is divided into five smaller modules :

Module A This module reads the data generated by the Preparation Module. It checks

the inputs for consistency. The routines in this module are again those in the Stuttgart

LMTO47, but modified to read the inputs for both the two constituents of the alloy.

Module B At the start of the DFT self-consistency loop, this module takes the overlap of

a simple Hartree atomic density calculation in the Preparation module and generates

the Hartree and exchange-correlation potentials, spheridizes them and inputs them

to the Atomic Module that follows. In later steps of the self-consistency loop, this

Module first mixes the charge densities of the earlier steps and prepares the Hartree

and exchange-correlation potentials,spheridizes them for input into the Atomic Module.
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Figure 3.2: The TB-LMTO-Augmented Space Recursion package flowchart
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- At this point there is a choice of using either the standard DFT exchange-correlation

potentials or, alternatively, there is a branch module Harbola-Sahni which sets up the

Harbola-Sahni potential for the study of excited states [Rahaman et al., 2009].

Module C This is the Atomic Module. It takes the spheridized Kohn-Sham potential

generated in Module B and solves the radial Kohn-Sham equation numerically. The

Kohn-Sham orbitals and energies then lead to the potential parameters for each con-

stituent. Those for the two constituents are calculated on different processors. The

parameters are first calculated in the orthogonal representation. A new routine gtoa,

not present in the Stuttgart LMTO47 package, then transforms them to the most

screened tight-binding representation.

Module D This is the main ASR Module. The routines herein have been fully developed

by us and form the main backbone of the package. The input are the tight-binding

Hamiltonian parameters from the Atomic Module. First they are combined with the

alloy composition to prepare the augmented space Hamiltonian. The nearest neighbour

map in augmented space is then generated. Next, the recursion is carried out for each

L value, terminators generated and the L projected density of states are calculated.

Each different recursion for each L value is carried out on a different processor, thus

vastly accelerating the calculations.

We then proceed to calculate the total density of states and the Fermi energy. Again,

branching out into different processors, we calculate the L-dependent moments and

magnetic moments. Of all the Modules, this is the one amenable to maximum paral-

lelization.

(a) At this point we have the possibility of introducing short ranged order.The ASR

for short-ranged order has been described in some detail earlier [Mookerjee and

Prasad, 1993]. The branching for this choice occurs just before we set up the aug-

mented space Hamiltonian. The extra input is the Warren-Cowley short ranged

order parameter.
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(b) Also at this point we have the option to introducing disorder in the structure

matrix because of size mismatch between the two constituents of the alloy. The

branching now takes place earlier in the Preparation Module where we generate

not one, but three different structure matrices : SAAij , S
BB
ij and SABij . In the ‘end

point’ approximation [Saha and Mookerjee, 1996] structure matrix is defined by:

S̃ =
∑
ij

{
� Sij � I + S

(1)
ij (Ni +Nj) + S

(2)
ij Ni ⊗Nj

}
⊗ Tij (3.13)

where Ni = (y − x)P↓i +
√
xyT↑i↓i , S(1) = SABij − SBBij and S(2) = SAAij + SBBij −

2SABij . This modification will be available in this module.

It is in these last two options that the ASR really scores over the CPA, which cannot

really deal with either short-ranged order or off-diagonal disorder as both involve more

than one site. The competing methodology is the special quasi-random structures

(SQS) [Zunger et al., 1990]. However, if we are dealing with materials with many

atoms per unit cell and non-stoichiometric compositions, the SQS required will be

rather large and will involve use of huge unit cells. Here the TB-LMTO-ASR with the

use of much smaller unit cells will score. We have shown earlier [Tarafder et al., 2008a]

that both these two methods give virtually the same results for the density of states.

Module E In this module the L-dependent moments are used to obtain the charge density.

We also calculate the total energy, including the Madelung term. For the disordered

alloy, the Madelung term is obtained from the procedure suggested by Skriver and

Ruban [Ruban and Skriver, 2002]. Finally the old and new moments are mixed, the

mixed charge density thus obtained is input back in Module B. This is iterated till

convergence in both energy and charge density is achieved.

For the DFT part, our code depends heavily on Stuttgart-LMTO routines developed by

Anderson and co-workers [Andersen and Jepsen, 1984]. Two independent DFT codes run

parallely to produce the potential parameters of the two constituent atoms of the binary
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% cumulative self self total

time seconds seconds calls s/call s/call name

49.91 100.73 100.73 81 1.24 2.26 hop

40.78 183.04 82.31 1.6×109 0.00 0.00 matp

0.76 196.82 1.53 7 0.22 0.22 spectral

0.00 201.84 0.00 1.8 ×105 0.00 0.00 splint

0.00 201.84 0.00 206 0.00 0.00 spline

0.00 201.84 0.00 56 0.00 0.00 matmult

0.00 201.84 0.00 36 0.00 0.00 mom

0.00 201.84 0.00 28 0.00 6.59 doparallel

0.00 201.84 0.00 7 0.00 0.00 fit

0.00 201.84 0.00 4 0.00 0.00 tdos

0.00 201.84 0.00 1 0.00 0.00 band

0.00 201.84 0.00 1 0.00 0.00 fermi

0.00 201.84 0.00 1 0.00 0.00 pardos

Table 3.1: gprof data for the optimized and parallelized ASR code. The discontinuity between

the cumulative time of spectral and splint is due to the machine routine which are not

included here.

alloy. These potential parameters are used at the input point of our ASR routines in Module

D.

Our present DFT modules deal only with collinear magnetism. For spin dependent

calculations the Hamiltonian is separable in spin space. Thus the spin is merged with the

label L which is now {`,m, σ} and we have just to carry out twice the number of recursions

: for σ =↑ and ↓. In case we wish to introduce spin-orbit coupling and possibility of

non-collinear magnetism, we have to replace the DFT module with one dealing with density

matrices, rather than densities [Lizárraga et al., 2004] and the ASR module with one applying

generalized or vector recursion [Godin and Haydock, 1988, 1991] which was designed to deal

with Hamiltonians whose representation in spin-space or ‘spinor’ bases is not diagonal.

68



Section 3.2

Old TB-LMTO-ASR AMscf

Wall time 699 sec 225 sec

Efficiency

(
cputime

walltime

)
0.714 0.97

Table 3.2: Comparison between old code based of augmented space recursion and AMscf

To benchmark these characteristics we take a specific calculation on FexCr1−x and CuxZn1−x.

Each calculation is done on a 73109 site augmented space map, with N recursion steps with

L = s, px, eg and t2g), and σ = 1, 2, followed by a Beer-Pettifor termination scheme . Gnu

profiler output [Fenlason and Stallman, 2011] for the new TB-LMTO-ASR are given in the

Table (3.1). Table 3.2 shows the compairison between an pre-existing augmented space re-

cursion based code [Chakrabarti and Mookerjee, 2005] and AMscf. Here Wall time is the

total run time and Efficiency is the ratio between the Wall time and CPU time.
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Chapter 4

Applications of ScASR: Electronic

Structure of some binary alloys

This chapter is based on

P.Singh, R. Banerjee, M. Rahaman, A.V. Ruban, B. Sanyal, and

A. Mookerjee. Magnetic behaviour of AuFe and NiMo alloys. Pra-

mana, 76:639, 2011.

Rudra Banerjee and Abhijit Mookerjee. Study of phase stability of

MnCr using the augmented space recursion based orbital peeling

technique. Physica B: Condensed Matter, 404(14-15):1979–1983,

July 2009.

Rudra Banerjee and Abhijit Mookerjee. Augmented Space Recur-

sion Code and Application in Simple Binary Metallic Alloy. Inter-

national Journal of Modern Physics C, 21(02):205, 2010.

The code, as detailed in §2 and §3 is implemented in different binary and ternary alloys.

But, before applications, we have tested the formalism on a few simple binary alloys. This

chapter proceeds as follows:
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In §4.1 we will discuss Electronic structure of two very different type of alloys where one

shows split Density of states (DOS) and the other has overlapped DOS. The systems

studied here are CuZn and FeCr.

In §4.2 we will discuss Electronic structure and ordering energy, effective pair interactions

etc. of MnCr alloy.

In §4.3 we will discuss the Electronic structure and Effective Pair interaction (§2.7.2) of

AuFe Alloy.

4.1 CuZn and FeCr alloy

The suitability of our method is based on how good it can reproduce various alloys giving

rise to different type of DOS. In this section of, we have chosen two different types of alloy,

among them one gives split DOS and other overlapped.

The Figure 4.1 shows DOS of CuZn and FeCr alloy for 3 concentrations each. The CuZn

alloy shows split DOS where FeCr shows overlapped DOS. The alloys have been studied

earlier by us using the old version of the TB-LMTO-ASR [Chakrabarti and Mookerjee, 2005;

Saha et al., 1994, 1996] and TB-LMTO-CCPA1 [Rahaman and Mookerjee, 2009] and the

KKR-ICPA2 [Ghosh et al., 2002] which is also based on the augmented space formalism,

as well as through the KKR-CPA3 [Turchi et al., 1994], PAW-SQS4 [Zunger et al., 1990]

and KKR-NL-CPA5 [Jarrell and Krishnamurthy, 2001; Rowlands et al., 2005]. They are

therefore ideal system for bench marking the new TB-LMTO-ASR package. Comparison

of the densities of states shown in Fig. 4.1 with the results shown in the above references

will convince us that for FexCr1−x there is hardly anything to choose between the various

techniques and the packages based on them. However, for the split band alloy CuxZn1−x

1Tight-binding linear muffin-tin orbitals cluster coherent potential approximation
2Korringa-Kohn-Rostocker itinerant coherent potential approximation
3Korringa-Kohn-Rostocker coherent potential approximation
4Projector augmented wave special quasi-random structures
5Korringa-Kohn-Rostocker non-local coherent potential approximation
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Figure 4.1: (Top)DOS for CrxFe1−x for different compositions: (left) Cr7Fe3; (middle) Cr5Fe5;

(right) Cr3Fe7; (Bottom) DOS for CuxZn1−x for different compositions: (left) Cu24Zn76;

(middle) Cu50Zn50; (right) Cu75Zn25. Energy(Ryd) is plotted along x-axis; y-axis is DOS

(states/Ryd)

the TB-LMTO-ASR, TB-LMTO-CCPA and KKR-NL-CPA scores over the CPA versions,

as expected from earlier analysis.

One of our our main point of interest is the relative runtime and efficiency of this new

version of the TB-LMTO-ASR, as compared to the several earlier versions proposed by us(see

Table 3.1 on page 68). To benchmark these characteristics we take a specific calculation on

FexCr1−x. Each calculation is done on a 73109 site augmented space map, with N recursion

steps with L = s, px, eg and t2g, and σ = 1, 2, followed by a Beer-Pettifor termination scheme.
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4.2 MnCr alloys and their stability

We studied MnCr alloy to the study of phase stability and transition of binary alloys. We had

combined the recursion method introduced by Haydock, Heine and Kelly [Haydock et al.,

1972] and the our augmented space approach [Mookerjee, 1973] with the orbital peeling

technique proposed by Burke (§2.7.2) to determine the small energy differences involved in

the discussion of phase stability. We started our study of MnCr alloy with finding out the

structure of MnCr.

4.2.1 Calculation of ordering energy

We will describe very briefly the methodology of ordering energy calculation here. Philhours

and Hall [Philhours and Hall, 1967] have suggested, and Clapp and Moss [Clapp and Moss,

1966, 1968] have formally shown that a sufficient (but not necessary) condition for a stable

ground state is that the wave vectors of concentration waves corresponding to an ordered

phase lie in the positions of the minima of the Fourier transform of the pair energy function

V (~k) =
∑
~R− ~R′

exp
{
i~k · (~R− ~R′)

}
V (2)(~R− ~R′)

The above statement follows from the expression for the inverse susceptibility which measures

the response of the disordered system to the concentration fluctuation perturbation described

above.

χ−1(~k) ∝ 1 + x(1− x)βVeff(~k)

In a zero-th approximation Veff(k) = V (k). Corrections to the effective pair-function has

been described in detail by Chepulskii and Bugaev [Chepulskii and Bugaev, 1998]. We have

used here the Ring Approximation suggested by the authors as the one most suitable for our

analysis :

Veff(~k) = V (~k)− (β/2)(1− 2x)2

∫
d3~q

8π3
F (~q)F (~k − ~q) (4.1)

where

F (~q) =
V (~q)

1 + x(1− x)βV (~q)
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Ordering and mixing energies Finally, the GPM expression also gives the ordering

energy :

∆Eord =
1

2

∑
n

V
(2)

0n Qn

where n is a n-th nearest neighbor of an arbitrarily chosen site (which we label 0) and

Qn = (x/2)(NBB
n − xNn), NBB

n is the number of BB pairs and Nn the total number of pairs

in the n-th nearest neighbor shell of 0.

With reference to the total energies of the pure constituents, in the approximation where

we only restrict ourselves to pair energies and ignore all three body energies and higher, the

so-called mixing energy is given by :

∆Emix = −1

2
x(1− x)

∑
n

NnV
(2)

0n

4.2.2 Analysis of Stability

We have calculated the composition dependent pair energy functions using the TB-LMTO-

ASR coupled with the orbital peeling technique and the result for the equi-atomic compo-

sition is shown in Figure 4.2(b). The nearest neighbor pair energy function f1(~R − ~R′, E)

shows the characteristic shape of a positive lobe, indicating ordering, near the position of

half filling, flanked by negative lobes indicating segregation near empty and complete filling

fractions.

We should note that in our approach, both the pair energy function itself and the position

of the Fermi energy depend upon the composition of the alloy and its band filling. This is

in contrast to some analysis (like the Connolly-Williams) which depend on similar, but

composition independent, pair energy functions. The Figure 4.3(b) shows the pair energies

V (2)(|~R− ~R′|) for the equi-atomic composition. The behavior of the pair energies for MnCr

indicate ordering tendencies up to the fourth nearest neighbors. The pair energies rapidly

converge to zero with distance. In fact, although we had calculated the pair energies up to

the seventh nearest neighbor shells, their values beyond the fourth shell were smaller than the

error bars of our method and therefore these numbers were not really reliable and not used

for our analysis. The same is true for the results of the ordering energies for seven different
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(a) (b)

Figure 4.2: (a) Densities of states for a series of alloy compositions for 50-50 MnCr

alloy.(b)Pair functions calculated for Mn50Cr50, variation shown against E-EF , calculated

from ScASR -OP. (top) Nearest neighbor pair function at a distance
√

3a/2, a being the

equilibrium lattice parameter (bottom) second, third and fourth nearest neighbor pair func-

tions at distances a,
√

2a and
√

3a

structures and super-structures based on the body-centered cubic lattice. We have, therefore,

calculated the ordering energies with contributions only up to the fourth neighboring shell.

The Table 4.1 gives us the weights Qn for the seven bcc based structures required to obtain

the ordering energies in this alloy system. These superstructures are described in detail by

Finel and Ducastelle [Finel and Ducastelle, 1984].

Based on the Table 4.1 we present the ordering energies for the same seven bcc based

structures for MnCr in Figure 4.3(a).

The contrast between the two alloys FeCr [Tarafder et al., 2008a] and MnCr is interesting :

Fe segregates with Cr while Mn orders. The stainless steel alloys, a class of which are ternary

alloys FeCrMn should then see competition between segregation and ordering. We intend to

study the ternary compositions subsequently.

Finally we shall examine the Fourier transform V (~k) of the pair energies and carry out

a Clapp-Moss type of analysis. The contour diagrams for Fourier transform V (~k) is plotted
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Structure Neighboring shells

1 2 3 4

Segregated 1.00 0.75 1.50 3.00

B2 -1.00 0.75 1.50 -3.00

B32 0.00 -0.75 1.50 0.00

B11 0.00 0.25 -0.50 0.00

ST1 -0.50 0.25 0..00 0.50

ST2 0.00 -0.25 -0.50 0.00

ST3 0.50 0.25 -0.00 -0.50

Table 4.1: Weights for different neighboring shells for seven different bcc based equi-atomic

superstructures.

(a) (b)

Figure 4.3: (a)Ordering energies for seven different structures based on 4.1 and (b) Pair

energy for Mn50Cr50 alloy
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(a) (b)

(c) (d)

Figure 4.4: Veff(~k) and contours on the plane bounded by (a) (001) (b) (100) (c)(001) (d)(110)

of MnCr alloy

78



Section 4.3

in Figure 4.4 for the (001) and (11̄0) planes. The minimum occurs at ~k = (001) This is

indicative of a possible B2 type of ordering, as indicated by the ordering energy analysis.

In order to ascertain whether the ordered state associated with the minimum is stable

compared to the segregated species, we have to carry out a much more detailed analysis

including the contribution of the energy of mixing. The mixing energy for the B2 structure

is 0.16412 mRyd/atom. This indicates that ordering is stable against segregation.

We should comment here that the above discussion is based only on the electronic con-

tribution to the diffuse scattering intensity. At the temperatures that we are interested in

there are contributions from the vibrational excitations in the system. Our aim here was to

indicate the possibility of ordering tendencies in MnCr rather than accurate estimation of

energetics and transition temperatures. In any detailed and accurate statistical mechanical

calculations we must include the contribution of vibrational excitations to the free energy of

the alloy.

4.2.3 Conclusion

K. Tarafder et. al. [Tarafder et al., 2008b] had introduced and examined the suitability

and accuracy of the Augmented Space Recursion (ASR) based Orbital Peeling (OP) method

for the generation of pair energies. In this section we have extended these ideas into body-

centered cubic MnCr alloy. We have looked at the phase stability of the equi-atomic alloy.

Unlike FeCr, FePd and PtV alloys, for MnCr we had no earlier theoretical work to compare

with. However, since the applications to FeCr, FePd and PtV gave satisfactory results,

in good agreement with experimental evidence, we have confidence in our present results.

With FeCr, this work will form the background of our extension of this work to ternary

FeMnCr stainless steel alloys. The recursion and ASR is now available with both relativistic

corrections (including spin-orbit terms) [Huda et al., 2004] and non-collinear magnetism

[Bergman et al., 2008; Tarafder et al., 2008a]. Since earlier we have proposed the ASR

as a analyticity preserving generalization of the single-site mean-field coherent potential

approaches, this work will provide further incentive to extend the use of the ASR to problems

beyond the simple density of states calculations and in problems where relativistic corrections

and non-collinear magnetism will play significant roles.
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4.3 Magnetic properties of AuFe alloy

4.3.1 Electronic structure of AuFe Alloy

The Figure 4.5 shows the atom and spin projected density of states for Au1−xFex at two

characteristic compositions x = 0.04 and x = 0.10. This is an example of an almost split-

band alloy with the Au and Fe spectra hardly overlapping each other. It has been argued

earlier that dilute split-band alloys are well described by the augmented space recursion

technique used by us. We first note that the Au densities of states are negligibly exchange

(a) (b)

Figure 4.5: Projected densities of states for Au (black) and Fe (red) for Au1−xFex alloys (a)

x=0.01 (b)x=0.40

split. The Au atoms carry negligible magnetic moments at all compositions. The Fe density

of state for the dilute Fe composition (x = 0.04) resembles a narrow impurity band for both

the spin orientations. As the iron concentration increases the Fe PDOS becomes wider. The

up-channel is almost fully occupied,while the down-channel is almost half full. This feature

remains unchanged across the composition range.
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4.3.2 Magnetic structure of AuFe Alloy

The Figure 4.6 shows the local magnetic moment on the Fe atom in the Au1−xFex alloy in

the same composition range. We should note two specific points:

Figure 4.6: Local magnetic moment at a Fe site in Au1−xFex as a function of Fe concentration

x

(i) even in the composition range x ≤ 0.1 where the global magnetic moment is experi-

mentally found to be zero, locally Fe atoms in the alloy have finite moments at low

temperatures. The study of the local magnetic moment cannot distinguish the random

ferromagnet from a spin glass phase.

(ii) The local magnetic moment on Fe increases as its concentration decreases. This indi-

cates that the magnetism on Fe is predominantly itinerant. We have noted that the

projected density of states for Fe becomes narrower as its concentration decreases. The

Stoner criterion says that its magnetic moment should increase. As x→ 0 this moment

approaches that of an Fe atom.

Figure 4.7(a) shows the variation of J(R) = E(2),FeFe(R) with R for various compositions

of the Au1−xFex alloy. We may note two features of the pair energies :
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(i) The pair energies are dependent on the composition. The simplified models without

exception assumed that the pair energy depended only on the materials comprising the

alloy. Figure 4.7(b) shows the composition dependence of Jn = J(Rn) at various values

of n-th neighbor distance Rn on the face-centered cubic lattice. Both J1 and J2 show

strong dependence on the Fe concentration x. Several of the pair energies (markedly

J2) change their sign with increasing Fe concentration. This has to be incorporated in

any realistic model of the spin glass.

(ii) The pair energy J(R) oscillates in sign with increasing R so that the possibility of

frustration is present. The nearest neighbor pair energy is strongly ferromagnetic

and quite a bit larger than the next nearest neighbor one. The behavior of the pair

energies exhibits exponential decay characteristic of disorder damping. With increasing

Fe concentration disorder scattering increases and so does the damping. A model with

damped, oscillatory interaction seems suitable for these alloys.

Let us examine the behavior of J(R) in greater detail. To quantify the variation of Jn with

n we use the spatial moments of the scaled pair energy :

I0 =
∑
R

W (R)J(R)

In−1 =
∑
R≥a

W (R) {J(R)/I0}n n = 2, 3 . . . (4.2)

W (R) are the coordination numbers on the face-centered cubic lattice.

From Figure 4.8 we note that the third and fifth moments I2 and I4 are negative. This

is characteristic of distribution which are asymmetric with more weightage towards negative

or antiferromagnetic pair energies. This asymmetry decreases as the concentration of Fe

increases and at around x ' 0.16− 0.18 the moments become positive. The fourth moment

I3 goes to zero with increasing x indicating that the distribution becomes more Gaussian,

while the second moment I1 also decreases and the distribution about the mean becomes

sharp delta function like. Can these results throw some light on the nature of frustration in

the system and its behavior with x ? Khmelevskyi et.al.[Khmelevskyi et al., 2004] have used

the partial moments K(R0) =
∑

R>R0
W (R)J(R) to illustrate frustration. We argue that
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(a)

(b)

Figure 4.7: (a)The pair energy JFeFe(R) for AuFe alloys, across the composition range, as a

function of R = |Ri −Rj|. (b) Variation of JFeFe(R) with composition.
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Figure 4.8: Moments of J(R) for AuFe alloys (for R ≥ a) and their variation with compo-

sition

the moments by themselves cannot give full information about frustration unless we couple

them with the lattice topology. Predominance of antiferro-magnetic pair energies indicates

the possibility of frustration. But antiferro-magnetic pair energies themselves may not lead

to frustration until we couple it to frustrated plaquettes on the lattice. On bipartite lattices

even completely antiferro-magnetic pair energies lead to no frustration at all.

Figure 4.9 shows the smallest triangular and quadrilateral plaquettes within a cubic unit

cell of the face-centered cubic lattice. Only one example Figure 4.9(f) covers a triangular

plaquette that spans two neighboring cells. The signs shown are that of the corresponding

J(R) for x = 0.01. All these plaquettes involve sides which are up to fifth nearest neighbors.

Given the exponential decay of J(R) with R, these smaller plaquettes are energetically the

most important. The nearest neighbor plaquette (Figure 4.9(a)) is not frustrated, as all

pair energies are ferro-magnetic. All the remaining triangular plaquettes (Figure 4.9(b)-

4.9(f)) are frustrated. However, as x ≥ 0.16 both the second and fifth nearest neighbor pair

energies change sign and all these plaquettes lose their frustration. In the bottom row, the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: Plaquettes on the face-centered cubic lattice. Signs are those of the corresponding

pair energies for x = 0.01
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quadrilaterals (Figure 4.9(h)) and (Figure 4.9(i)) are also frustrated at x = 0.01 and lose

their frustration as x ≥ 0.16 and the second and the fifth nearest neighbor pair energies

change sign. The table 4.2 shows the statistics of the plaquettes of various sizes and shapes

within the cubic unit cell. As the concentration of Fe increases 78% of the triangular, and

90% of the polygonal plaquette which were frustrated earlier now lose their frustration.

Plaquette (a) (b) (c) (d) (e) (g) (h) (i)

Number 32 24 24 24 48 12 72 48

Table 4.2: Number of different triangular, quadrilateral and pentagonal plaquettes in a cubic

unit cell

It is clear from the examination of the smaller plaquettes on a face-centered cubic lattice

that the degree of frustration, as measured by the number of frustrated plaquettes, decreases

considerably as x increases. Since frustration is central to the understanding of the spin-glass,

the decrease of the degree of frustration with increasing x could be understood as the cause

of the spin-glass to random ferro-magnet transition with composition at T=0. This could

not have been understood without a microscopic derivation of the coupling. The physics of

the interplay between chemical and magnetic ordering in AuFe has been described in some

detail by Ling et.al.[Ling et al., 1995]. We have used the KKR-CPA type calculations to

obtain the Ornstein-Zernicke direct correlation function from the electronic grand potential.

We have not addressed the problem of chemical ordering and its effect on magnetic ordering.

The Ising model which we have set up is obtained, from a generalized perturbation, by

introducing magnetic fluctuations in an otherwise non-magnetic background.

4.3.3 Mean field Phase analysis of AuFe

Our model consists of NA, A and NB, B atoms uniformly distributed over M lattice sites and

interacting via our estimated pair energies J(|Ri−Rj|). These may vary in sign as a function

of distance providing the main ingredient, frustration, in the system. The probability of an

atom A occupying a specific site Rk is 1/M , as every site has equal probability of occupation.

Similarly, the probability that a site is occupied by a A atom is NA/M and a B atom is
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NB/M . In the thermodynamic limit, in the absence of any clustering or segregating effects,

lim
NA,M→∞

NA

M
= xA lim

NB ,M→∞

NB

M
= xB

xA, xB being the atomic concentrations of A and B constituents. The random ‘Hamiltonian’

is the same as shown in Eqn. (3):

∆E =
1

2

∑
QQ′

∑
Ri,Rj

JQQ
′
(|Ri −Rj|) δξQi δξQ

′

j

where,

JQQ
′
(R) = E(2),QQ′

(R)

For a binary alloy, Q,Q′ can be either A or B. JQQ
′
(|Ri −Rj|) is random depending upon

Figure 4.10: Decay of scaled moments In with n for AuFe

which type of atoms occupy the sites Ri and Rj. It can take on the values JAA(|Ri −Rj|),
JBB(|Ri −Rj|) or JAB(|Ri −Rj|).

Introducing the single-site mean field approach by replacing the quadratic term δξQi δξ
Q′

j

by δξQi m
Q′

j + δξQ
′

j m
Q
i −m

Q
i m

Q′

j where mQ
i is the thermal average < δξQi >, we can obtain
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the Free energy as :

F = −1
2

∑
QQ′
∑

Rj ,Rj∈QQ′ JQQ
′
(|Ri −Rj|)mQ

i m
Q′

j

+ 1
β

∑
Q

∑
Ri∈Q log cosh(βhQi ) (4.3)

where the local ‘Weiss’ fields are :

hQi =
∑
Q′

∑
Rj∈Q′

JQQ
′
(|Ri −Rj|)mQ′

j (4.4)

In an ordered alloy we can define a homogeneous order parameter corresponding to the

occupation variable of a Q type of atom as mQ = (1/NQ)
∑

i∈Qm
Q
i and an average global

order parameter as m =
∑

Q xQm
Q. In our disordered system inhomogeneities are in a

macroscopic scale and this prevents us from introducing such an idea prior to some kind of

configuration averaging. Rather we picture the system as follows : the net result of random

pair energies connecting a local order parameter with its neighborhood is that it experiences

a local random ‘Weiss’ field along which the average AS moment aligns. This leads to a set

of local order parameters {mQ
i }. In order to describe the local order parameters we need

to know the distribution of the local ‘Weiss’ fields. This interpretation links our work with

that of Thouless [Thouless et al., 1977] and Mookerjee [Mookerjee, 1978]. The free energy is

a function of the whole set of local order parameters. The stable phase solution comes from

the equations ∂F/∂mQ
i = 0 for all i. This leads to :

mQ
j = tanh

[
βhQj

]
Q,Q′can be A or B (4.5)

For sufficiently high temperatures, the only consistent solution will be mQ
i = 0 ∀i. At low

concentrations of the magnetic constituent and as we lower the temperatures some of the

local order parameters become non-zero and they are distributed randomly on the lattice.

As many of them are + as they are −, so the net global order parameter may be zero, but the

local one is still non-zero but random at Fe atoms. Moreover, there could be several different

configurations of ± order parameters which have the same free energy. This implies that

rather than having a unique stable phase with non-zero global order parameter, we have a

very corrugated free energy landscape with many minima differing in random distributions of
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± moment carrying AS separated from each other by energy barriers. The resulting ‘phase’

may consist of domains with differing local AS configurations. One way of describing such

an inhomogeneous picture is to find the distribution function of the scaled local ‘Weiss’ field.

The scaling is carried out as follows : all J(R) is replaced by I(R) = J(R)/I0. In case there

is only one magnetic constituent, the scaling is done with : I0 =
∑

RW (R)J(R). In case

both the constituents are magnetic we have three factors IAA0 , IAB0 and IBB0 and we scale with

respect to I0 = Max {IAA0 , IAB0 , IBB0 }. Here W (R) is the coordination number at a distance

R from an origin.

The scaled ‘Weiss’ fields are given by :

ĥQi =
∑
Q′

∑
Rj∈Q′

IQQ
′
(|Ri −Rj|) mQ′

j

The technique for the derivation of distribution function has been described earlier by Klein

[Klein, 1968] and Mookerjee [Mookerjee, 1978] and the reader is referred to those papers for

details. Here we shall quote the procedure and the main results. The probability is first

expressed as a Radon transform of the Eqn.(4.4) and then the approximation is introduced

in which we replace the delta-functional kernel of the Radon transform by its configuration

average. Under the assumption that local ‘Weiss’ fields at different sites are uncorrelated : so

that there is no clustering or short-ranged correlations between the local order parameters,

we get

PQ(ĥQi ) =
1

2π

∫
dk eikĥ

Q
i

∏
Q′

[
1− FQQ′(k)

M

]NQ′

where,

FQQ′(k) =
∑
R

∫
dzPQ(z)

[
1− exp

{
−ikIQQ′

(R)tanh(βJQQ
′
(R)z)

}]
In the thermodynamic limit :

PQ(ĥQi ) =
1

2π

∫
dk exp

{
ikĥQi −

∑
Q′

xQ′FQQ′(k)

}
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The direct calculations of the FQQ′(k) are tough as it stands, but let us expand the

exponential and examine the terms :

FQQ′(k) =

∫
dz PQ(z)

[
ikIQQ

′

0 tanh(βJQ0 z) +
k2

2
IQQ

′

1 tanh2(βJQ0 z) . . .

. . . +
(−ik)3

6
IQQ

′

2 tanh3(βJQ0 z) . . .

]

where ∑
R

W (R)In(R) = In−1 n = 1, 2 . . .

We define :

JQ0 =
∑
Q′

xQ′mQ′∑
R

JQQ
′
(R) =

∑
Q′

kBTQQ′mQ′

JQ1 =
∑
Q′

xQ′qQ
′∑
R

JQQ
′
(R)

2
=
∑
Q′

k2
BT

g2
QQ′qQ

′

and

mQ =

∫
dz PQ(z) tanh(βJQ0 z)

qQ =

∫
dz PQ(z) tanh2(βJQ0 z) (4.6)

Comparing Eqns. (4.5) and (4.6) we note that we can interpret mQ and qQ as the

configuration averages � mQ
i � and �

(
mQ
i

)2

�. Our frozen disordered local moment

picture envisages spin-glass in AuFe as a ternary alloy Au1−xFe↑x/2Fe↓x/2, and that in NiMo

as a quaternary alloy Ni↑1−x/2Ni↓1−x/2Mo↑x/2Mo↓x/2. For this phase mQ = 0 but qQ 6= 0. Thus

the frozen disordered moment picture is consistent with our model for a spin-glass.

From Figure 4.10 we see that the moments In−1 rapidly decrease as n increases. We shall

therefore neglect all terms with In−1 with n > 3. Then the probability densities become

Gaussian. The distribution of the unscaled local ‘Weiss’ field h = J0 ĥ becomes :

PQ(hQ) =
1√

2πJQ1

exp
{
− (hQ − JQ0 )2/(2JQ1 )

}
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Figure 4.11: Phase diagrams for AuFe alloys

The equations (4.6) then reduce to the standard mean-field equations :

mQ =
1√
2π

∫
dze−z

2/2tanh

[∑
Q′

TQQ′

T
mQ′

+
T g2

QQ′

T 2
qQ

′
z

]

qQ =
1√
2π

∫
dze−z

2/2tanh2

[∑
Q′

TQQ′

T
mQ′

+
T g2

QQ′

T 2
qQ

′
z

]

The results are similar to many earlier work based on the distribution of local ‘Weiss’

fields, but it must be emphasized that our derivation has throughout made assumptions that

take into account both a correct description of substitutional disorder and correct form of

the pair energies. The scaling of both the mean and variance of the local ‘Weiss’ field with

concentration of the magnetic component naturally arises in our results. Moreover, in this

derivation we emphasize on the distribution of local ‘Weiss’ fields, so that the inhomogeneous

picture of the system remains intact. mA,mB, qA, qB are being related to the moments of

the local ‘Weiss’ field distribution.

One phase is characterized by mQ = 0, qQ = 0 so that the ‘Weiss’ field distribution is a

delta function at hQ = 0. This is obviously a paramagnetic phase with no local or global

magnetization. Another phase is characterized by mA = 0,mB = 0, qA 6= 0, qB 6= 0. Here

the distribution of the ‘Weiss’ fields are Gaussian with means at zero but with a non-zero
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spread. How can such a phase be described ? Since the mean is zero the local magnetization

positive at as many sites as it is negative. This is exactly the frozen disordered moment

picture described earlier. The spin-glass phase boundary is given by :

Tg =
1

2

{
(T gAA + T gBB) +

√
(T gAA − T

g
BB)2 + 4T gABT

g
BA

}
(4.7)

In case one of the constituents is non-magnetic, so that JAB = JBA = JBB = 0, JAA 6= 0

and xA = x, xB = 1− x, as in the case of AuFe,

kBTg(x) =
√
xJA1 (x) (4.8)

Finally there is a third phase where mA 6= 0,mB 6= 0, qA 6= 0, qB 6= 0. For this phase the

distribution of the local ‘Weiss’ fields are shifted Gaussians with a non-zero mean. So not

only is there a distribution of different local moments, the global averaged moment is also

non-zero. This is the random ferro-magnetic phase. This boundary is given by :

Tc =
1

2

{
TAA + TBB +

√
(TAA − TBB)2 + 4TABTBA)

}
(4.9)

For the case of only one magnetic constituent, as in AuFe we get :

kBTc(x) = xJA0 (x) (4.10)

The derivation of the distribution of the local ‘Weiss’ fields in alloys with both components

carrying moments has been done in detail earlier and we refer the reader to the work of

Mookerjee and Roy [Mookerjee and Roy, 1983]. Figure 4.11 shows the phase boundaries

between the paramagnetic, random-ferromagnetic and spin-glass phases for AuFe. Since we

have seen that Au carries negligible local moment, we have used eqn. (4.8) and (4.10). The

range in the concentration-temperature domain where we have the possibility of clustering

and mixed phases has been blocked out, as our simple mean-field theory cannot hope to

describe such phenomena. If we compare the phase diagram with experiment, qualitative

agreement is immediately observed [Sarkissian, 1981]. Since this is a mean-field theory,

we do not expect very good agreement quantitatively. However, the overall trend is well

reproduced.

92



Chapter 5

Magnetic ordering in Ni-rich NiMn

alloys around the multi-critical point

This chapter is based on

Pampa Pal, Banerjee, Rudra, Radheshyam Banerjee, Abhijit

Mookerjee, Gopi Chandra Kaphle, Biplab Sanyal, Olle Eriksson,

P. Mitra, A. K. Majumdar, and A. K. Nigam. Magnetic ordering

in Ni-rich NiMn alloys around the multi-critical point : Experiment

and Theory . Phys. Rev. B (accepted), 2012.

5.1 Introduction.

Magnetism in Ni100−xMnx alloys provides a classic example of a disordered system with com-

peting interactions. In an early work, Hahn and Kneller [Hahn and Kneller, 1958] carried

out magnetic studies on Ni-Mn alloys as a function of heat treatment. They found that in

spite of quenching from well above the ordering temperature, there exists small ferromag-

netically ordered Ni3Mn regions of about 20 Å in diameter in a matrix of the disordered

material. This made the preparation of homophase Ni-Mn alloys a difficult task. Soon after,

Kouvel and Graham [Kouvel and Graham Jr, 1959] established the coexistence of ferromag-
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netism and anti-ferromagnetism coming from competing pair exchange interactions between

the components at low temperatures in disordered Ni100−xMnx alloys with x = 20, 25, and

30, through hysteresis loop and torque measurements.

Kouvel et.al. [Abdul-Razzaq and Kouvel, 1987] reported the magnetic phase diagram in

the composition range 23 ≤ x ≤ 27. They observed, below the multi-critical point (MCP)

of x = 23.9 and T = 102 K, a double transition from a paramagnetic to a ferromagnetic

state at TC followed by a spin-glass(SG)-like state at Tfg < TC with a re-entrant character.

Above x = 23.9 they found a paramagnetic to a normal SG state at Tg.

Aitken et.al. [Aitken et al., 1982] found the MCP to be above x = 26. This difference

could arise from the difference in atomic short-range order in the two works. Hauser and

Bernardini [Hauser and Bernardini, 1984] studied sputtered films of Ni100−xMnx alloys and

their bulk counterparts. They observed paramagnetic to spin glass transition through ac-

susceptibility, χ(ω) measured at 10 kHz and 4 Oe a.c. field. from 14.7×10−3 for x = 22 where

TC ∼ 290 K and Tg ∼ 40 K. They concluded that the presence of ferromagnetism below x

= 26 is independent of preparation conditions, be they induction melted or quenched bulk

alloy or sputtered films. However, the magnetic parameters like TC, Tg, χ(T), etc. varied

considerably.

Needless to say that a more detailed magnetic phase diagram of this interesting system

is certainly necessary, especially away from the multi-critical composition.

Previous theoretical studies [Gabay and Toulouse, 1981; Mookerjee and Roy, 1980] had

also shown that this SG-like phase below Tfg may have a spontaneous FM moment with

the transverse spin components ordered in a spatially random manner. It has therefore

been called a ‘mixed phase’. We indeed found that the SG-like phase has a spontaneous

moment and the FM to SG-like transition temperature (Tfg) increased while the FM Curie

temperature (TC) decreased with increasing Mn concentration. They met at x = 25 and T

∼100 K, the multi-critical point (MCP). For alloys with x = 30 and 35, we observe only a

single transition from paramagnetic to a spin-glass-like (or anti-ferromagnetic) phase which

is different from that of the previous ‘re-entrant spin-glass’ phase. At higher concentrations

like x = 37, a paramagnetic to an anti-ferromagnetic transition is noticed.

We shall interpret the above behavior in terms of a Weiss field constructed out of the
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Ruderman-Kittel-Kasuya-Yoshida (RKKY) kind of indirect exchange interaction between

the moments mediated by the conduction electrons as in an itinerant magnetic system rather

than the pair interactions of a localized model. In this model the dominant exchange energies

are anti-ferromagnetic Mn-Mn and ferromagnetic Ni-Ni and Ni-Mn interactions [Carr, 1952].

According to this model, for low Mn concentration (x), Mn-Mn interaction is negligible and

hence all the spins become parallel resulting in an increase in M falling on the right segment

of the Slater-Pauling (SP) curve (moment/atom vs. electron/atom) with a slope of -1. For

disordered alloys with somewhat higher x, the Mn-Mn AF interaction wins over the Ni-Mn

FM interaction and Mn spins tend to cancel each other. As a result M decreases with x

and start following the left segment of the SP curve. At still higher x, Ni 3d minority band

gets gradually filled reducing the magnetization and due to the Z-difference of 3 between

Ni and Mn ferromagnetism is lost for x ∼ 30, which is what is found in most experiments.

The magnetic behavior of Ni-Mn alloys is typical of a competing interacting system with

ferromagnetic and anti-ferromagnetic regions enclosing a concentration regime in which only

magnetic short-range order (MSRO) exists

5.2 Samples

We have investigated in detail the magnetic properties of six samples of disordered Ni100−xMnx

alloys enclosing the critical concentration (x = 25) in the composition range x = 15 - 37 at.%

Mn which was the transition region from ferromagnetism to antiferromagnetism as shown in

Table. 5.1.

For alloys with x= 15 and 20, on decreasing the temperature, we observed a paramagnetic

(PM) to a ferromagnetic (FM) transition at TC and then below Tfg the occurrence of a spin-

glass (SG)-like phase.
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Samples

Figure 5.1: EPE for NixMn1−x alloy. Left column: EPE for the nearest neighbor distances.

It is seen that the Mn-Mn EPE is anti-ferromagnetic and most dominant; whereas, those for

Mn-Ni and Ni-Ni are ferromagnetic but relatively weak. Right Column : EPE for second

nearest neighbor and further distances. The oscillatory behavior shows the possibility of

frustration.

96



Section 5.4

# Ni Mn Å

1 85 15 3.572

2 80 20 3.583

3 75 25 3.595

4 70 30 3.615

5 65 35 3.654

6 63 37 3.670

Table 5.1: Atomic concentration of NiMn alloy and lattice parameters.

5.3 Ordering of magnetic moment carrying atomic

spheres

In order to understand the onset of magnetic ordering in random alloys, we proceeded in two

steps. The formation of a magnetic moment within an atomic sphere was analyzed using the

TB-LMTO-ASR as described above. This is an itinerant electron picture where the moment

is produced by an exchange splitting of the majority and minority spin projected densities

of states. However, the ordering of these moment carrying atomic spheres is studied via

derivation of the lowest configurational energy for a specified spin configuration. Models have

been set up describing configurational energies in terms of effective multi-site interactions,

in particular “effective pair energies” (EPE). Within this approach, the analysis of alloy

ordering tendencies and phase stability reduces to accurate and reliable determinations of

these EPE. We have calculated EPE on 40 × 40 × 40 lattice. The oscillatory behavior of

Mn-Mn, Mn-Ni and Ni-Ni EPE with distance and also the fact that nearest neighbor Mn-Mn

EPE is anti-ferromagnetic where Mn-Ni EPE and Ni-Ni EPE are ferromagnetic. This is a

clear indication of strong frustration in the system. The JNiNi(0) increases with increase

of Ni concentration, consistent with the fact that Ni has very fragile magnetic moment and

depends heavily on its surroundings. When Ni concentration is high, its more likely to be

surrounded with more Ni atoms and the dominant JNiNi(0) increases. On the other hand

the dominant EPE for both Mn-Mn and Mn-Ni decreases with increase of Ni concentration.
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Figure 5.2: Phase diagram of NiMn based on a mean field calculation.

5.4 Mean field analysis of the random Ising model

Mookerjee and Roy [Mookerjee and Roy, 1983] have studied the T = 0 phases and have

shown that there exists a critical concentration xC which separates the spin-glass from the

ordered phases. We have also carried out a mean field calculation and obtained the magnetic

phase diagram in Figure 5.2.

5.5 Magnetic relaxation

The spin-glass state has a very complex phase space and a lack of ergodicity[Mookerjee and

Roy, 1983]. This leads to interesting dynamical behavior where relaxation of magnetization

is characterized by a wide spectrum of relaxation times [Chowdhury and Mookerjee, 1983].

Hellsvik et.al.[Hellsvik et al., 2008] has suggested that an aging experiment is an elegant

way to exhibit the multi-scale nature of dynamics in a spin-glass. In an aging experiment,

the alloy is quenched from a high temperature in zero field, down to temperatures below

the critical temperature (TC or Tg). The aging now proceeds for a ‘waiting time’ tw during

which a small external field h is applied and the subsequent relaxation of magnetization m(t)

is measured. After quenching the magnetization first relaxes towards a local equilibrium
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Figure 5.3: Auto correlation functions for Ni1−xMnx alloy. The figure shows anomalous

slowing down of auto-correlation for x = 30. The aging behavior within the range 20 ≤ x ≤
35 agrees with the experimental suggestion of spin-glassy behavior for these compositions.

Breakdown of aging at x = 15 and x = 37 also agree with the experimental suggestion of

transitions to random ferromagnetic and random anti-ferromagnetic states respectively, at

these compositions [Pal et al., 2012].

state. Subsequently, if there is a glassy state present the magnetization proceeds with aging

dynamics. In the absence of a glassy state, the system relaxes towards the global equilibrium

state rather fast. In glassy states this latter type of relaxation is not achievable as the time

scale required is greater than the ergodic time τerg ∼ expN . In the absence of glassy

state, time translation in variance is satisfied and magnetic relaxation does not depend
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Figure 5.4: Comparison of NiMn alloy with different composition for highest waiting time

used (blue curves in Figure 5.3).

strongly on waiting times : Ceq(t) = C(tw+ t, tw). However, in a glassy state the fluctuation-

dissipation theorem is violated and aging is observed. The aging behavior of diluted magnetic

semiconductors [Hellsvik et al., 2008] has been studied recently by the same approach.

The magnetic pair energies JQQ
′
(R) are used to calculate the spin-spin auto-correlation

functions via a Landau-Lifshitz-Gilbert (LLG) equation of motion.

The spin-spin autocorrelation function

C(t, tw) =
1

N

∑
R

〈{
~mQ

R(t) · ~mQ
R(t+ tw)

}〉
(5.1)

carries the signature of this critical slowing down of magnetic relaxation. It is an important

tool to study the existence of the spin glass phase. We have used an atomistic approach as

proposed by Skubic et.al.[Skubic et al., 2008]. Skubic’s approach, based on density functional

theory starts with LLG equation. It allows us to carry out finite temperature calculations

by including a stochastic magnetic field (~bR(t)).

These alloys often exhibit macroscopic magnetic anisotropy in experiments [Monod and
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Berthier, 1980]. We shall, for the time being, ignore such anisotropy effects, and shall assume

that some mechanism exists to provide magnetic damping. This will be parameterized by α.

For the present we shall not attempt to obtain this parameter until we have identified the

mechanism for damping. We shall set α=0.1.

We have performed atomistic spin dynamics simulations using UppASD code [Ericksson,

2009]. The calculations have been carried out on a 30 × 30 × 30 lattice. In Figure 5.3,

we have shown log(C(t, tw)) vs t at three compositions across the composition range for

different logarithmically separated waiting times. The long waiting time regimes show no

aging behavior for x = 15. At x=30 (in fact, at all concentrations between x = 20 and

x = 35, not shown in the figure for compactness) aging behavior is prominent. Then at

x=37 and higher, aging behavior begins to break down.

Figure 5.5: Proposed phase diagram from Monte Carlo simulations followed by the aging

analysis

Preliminary Monte Carlo simulations showed that critical slowing down occurs close to the

temperatures shown in Figure 5.5. The LLG analyses were carried out at temperatures well

below these critical temperatures. Our analysis was in two steps. A DFT based calculation of
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the formation of moments in atomic spheres and a statistical analysis of the free-energetically

the most favorable arrangement of these moment carrying spheres. Since the DFT part was

done for uniaxial spins, we were unable to describe the ferro-spin-glass or the anti-ferro-spin-

glass mixed phases. Since the moments are randomly canted in these phases [Mookerjee and

Roy, 1983] it would have required a generalization of the DFT part to allow description of

non-collinear magnetic moments before carrying out the statistical analysis of their favorable

arrangements. Recently such a generalization has been carried out for the TB-LMTO-ASR

[Ganguly et al., 2011] and our immediate future plan would be to implement the Lichtenstein

formula within this formalism and describe the mixed phases.

Temp(K) τ1 τ2

100 813 140

70 449 120

50 200 41

(a) (b)

Figure 5.6: (a)Theoretical study of decay of magnetization with time. The decay rates

for the initial fast decay and the subsequent decay to a global minimum (m(t)/m(o) =

exp(−τt)) are shown for both the experimental data [Pal et al., 2012] and LLG simulation

results. The alloy shows freezing behavior at low temperatures. (b)LLG results for the

time decay of magnetization for the Ni75Mn25 alloy at different temperatures. Here too

the alloy magnetization shows anomalously slow relaxation as we approach and cross the

glass-transition temperature below 100K.
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5.6 Conclusions

We conclude from a detailed experimental magnetic study of several disordered Ni1−xMnx

alloys that the spin-glass-like state in these alloys below Tfg has a spontaneous (FM) mo-

ment. This moment decreases slowly with rising temperature and merges smoothly with

the spontaneous moment of the FM state at the multi-critical point (MCP) around 25 at.%

Mn. The existence of the reentrant SG phase, a canonical SG phase, and the onset of an

antiferromagnetic phase around 37 at.% Mn is also confirmed. In brief, we found ferro-

magnetic LRO with re-entrant spin-glass (RSG)/ferro-spin-glass (FSG) phase for x≤ 25, an

anti-ferromagnetic LRO around x∼ 37, and a gradual change from a canonical spin-glass

state (which is nothing but a short-range anti-ferromagnet) to a long-range AF phase in the

intermediate composition region.
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Chapter 6

Magnetic properties of FeNiMo alloy

This chapter is based on

Mitali Banerjee, Rudra Banerjee, A.K. Majumdar, Abhijit Mook-

erjee, Biplab Sanyal, and A.K. Nigam. Magnetism in NiFeMo disor-

dered alloys: Experiment and theory. Physica B: Condensed Mat-

ter, 405(20):4287–4293, 2010. ISSN 09214526.

R. Banerjee, M. Banerjee, AK Majumdar, A. Mookerjee, B. Sanyal,

J. Hellsvik, O. Eriksson, and AK Nigam. Fe3.3Ni83.2Mo13.5: a likely

candidate to show spin-glass behaviour at low temperatures. J.

Phys.: Condens. Matter, 23:106002, 2011.

High permeability and low magnetostrictive properties of Ni-Fe permalloys are widely used

in making magnetic cores for light electrical equipment applications. They are also useful as

magnetic shielding materials. Applications being one of the primary concerns in science and

technology of materials, permalloys are still attractive systems to study. High permeability is

expected to result from domain rotation against weak crystalline anisotropy or from boundary

displacements where the opposing force is small [Bozorth, 1953]. Considerable work has been

done earlier substituting Fe by other 3d transition elements like Cr and V in Ni-Fe permalloys

[Chakraborty and Majumdar, 1998b,a] but very few of them considered 4d or 5d elements

for substitution like Mo, or W, partly due to their high melting temperatures.
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In the present and next chapter we will study some Ni-rich Mo and W substituted permal-

loys.

Mo enhances the permeability of the material, even if a small amount is added. A

high permeability can also be obtained if the amount of Ni is reduced. Mo at the same

time increases the electrical resistivity of permalloys and hence reduces eddy current losses.

Magnetic heads consisting of NiFeMo alloys assures excellent high frequency characteristics.

It is relatively easy to form magnetic domain structures without any special heat treatment

(U.S. Patent 6376108 B1, 2002). We will present our first principle density functional theory

based calculation to try to understand the physics behind the problem.

6.1 Sample

The samples we used are shown in Table 6.1. This is based on our experimental sample

and lattice parameters are also determined from experiment. Experimental result shows the

lattice is FCC.

# Ni Fe Mo a(Å)

1 81.0 16.7 2.3 3.3558

2 80.4 12.9 6.7 3.566

3 83.4 10.7 5.9 3.568

4 83.5 7.6 8.9 3.561

5 83.1 6.0 10.9 3.565

6 83.2 3.3 13.5 3.571

Table 6.1: Atomic % of Ni, Fe and Mo in the six alloy samples and lattice constant.
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6.2 Experimental Motivation1

The electronic configurations of Mo is [Kr] 4d5 5s1 , while those of Fe and Ni are [Ar] 3d6

4s2 and [Ar] 3d8 4s2. The melting point of Mo is as high as 2890 K. Hence it is difficult to

make homogeneous alloys with Mo as additive.

Figure 6.1: Magnetization vs Temperature for two compositions (left) sample 5 with 10.9

at.% Mo, 6.0 at.% Fe and lower Tc and (right) sample 3 with 5.9 at.% Mo, 10.7 at.% Fe and

higher Tc.

In experiment, concentration of Ni roughly around 80-83 at.% and varied that of Fe and

Mo. The samples (3)-(6) belong to one group, where the Ni concentration is fixed at ∼ 83

at.% and increasing Mo and decreasing Fe content. Samples (1) and (2) belong to a slightly

different group with a lower Ni concentration of ∼ 80 at.% and relatively higher Fe content

than those in the other group.

Figure 6.1 shows the magnetization vs temperature curves for two representative samples

: one with a higher Mo concentration of 10.9 at.% and lower Fe concentration of 6 at.%

(sample 5, taken at 20 Oe) and the other with a lower Mo concentration of 5.9 at.% and a

higher Fe concentration of 10.7 at.% (sample 3, taken at 50 Oe). As shown in the inset, the

critical temperature Tc is obtained from the dip in dM/dT which corresponds to the point

1This section is based on [R. Banerjee et al., 2011; Banerjee et al., 2010b] and partly included in the

thesis of Dr. Mitali Banerjee
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Figure 6.2: M(H) vs H taken at 5 K for samples (4), (5) and (6).

of inflection in the M vs T curves. The higher the Fe concentration the higher is the Tc,

while the reverse trend is seen with increasing Mo concentration.

Figure 6.2 shows the M vs H curves for three representative samples (1),(3) and (4) (num-

bers refer to that given in Table 1). All experiments were carried out at 5K. The saturation

fields are very small in all three cases and the magnetization very quickly saturates. None of

the samples show appreciable hysteresis. All three cases are clean random ferromagnets. The

saturation magnetization decreases with increasing Mo and decreasing Fe concentrations.

Figure 6.3: M vs T results for sample (6) with both field-cooled and zero-field-cooled situa-

tions.
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The sample (6) shows a different behavior. Figure 6.3 shows the M vs T results for

this sample both for field-cooled and zero field-cooled cases. They now bifurcate at low

temperatures around 30 K. This is a signature of memory effects characteristic of a spin-

glass transition. We shall show later from our theoretical analysis that there is the possibility

of a spin-glass transition at around this composition. More careful experiments are suggested

in the neighborhood of this compositions to confirm (or otherwise) our prediction.

The Table 2 summarizes our results. Note that we have converted the magnetization

results from emu/g to µB units in order to compare with theoretical estimates.

Sample a Ms Tc

(A) (emu/g) µB (K)

1 3.558 80.5 0.85 720

2 3.565 53.6 0.56 495

3 3.568 51.3 0.54 470

4 3.561 32.5 0.34 320

5 3.565 26.5 0.28 182

6 3.571 7.9 0.08 10 (Tg)

Table 6.2: Summary of experimental results on the six alloy samples.

6.3 Electronic structure and magnetic moments

The usual statistical mechanical models used to study magnetism and magnetic phase di-

agrams of alloys involve the Ising and Heisenberg models, both of which involve localized

moments. Straightforward application of such models in our problem is inadmissible. It is

generally believed that Ni-rich alloy systems usually are itinerant magnets. Consequently,

these localized spin models are inappropriate for these systems. In order to describe our

alloys we have to begin with an itinerant picture. This we shall do within a local spin den-

sity functional (LSDA) approach. We shall begin with the Kohn-Sham equation for the of

valence electrons in the alloy. Our choice of electronic structure methods will be guided by

the fact that subsequently we shall have to model substitutional disorder. We shall choose
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the tight-binding, linear muffin-tin orbitals method (TB-LMTO)[§2.4.3]. Since the system

is disordered, our description of self-averaging properties will require configuration averag-

ing. In this work we have primarily used the ternary alloy version of the augmented space

recursion (ASR)[§2.6]. Once we have calculated the configuration averaged Green function

�Gσ
RiLRiL

(E)� we obtain immediately the local density of states, the charge and magneti-

zation densities and the local magnetic moment per atom. Within the TB-LMTO procedure

the solid is partitioned into atom-centric atomic spheres (AS) labeled by Ri. Φ(r −Ri) is

the wave function in an AS and ρ(r−Ri) is the charge density within it. m(r−Ri) is the

magnetic moment density in that AS. From this description it is clear that the magnetic

moment is smeared across the AS. m(Ri) integrated over an AS is the average magnetic mo-

ment associated with it. These magnetic moments are thus built up out of itinerant electron

charge densities associated with different spins.

Figure 6.4: Local magnetic moments per atom on Fe, Ni and Mo sites as a function of

composition. The labels indicate ( the concentration of Ni which is kept around 80-83 at.%.

Figure 6.4 shows the local magnetic moments on the Fe, Ni and Mo atoms in the alloy.
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These local moments were not accessible by the experiments we carried out. However, it

will be instructive to analyze the theoretical results. The Ni concentrations are almost

invariant across the six samples, fixed around 83 at.% for the first four and around 80 at.%

for the last two. The Fe moment changes very slowly across the composition range. That

for Ni increases linearly as Fe concentration increases and correspondingly Mo concentration

decreases. For the last two samples the Mo concentration is higher, and the Ni local moment

is correspondingly decreased. The moment on Mo is small and opposite to that of Fe and

Ni. Its behavior is a mirror image of that for Ni.

(a) (b)

Figure 6.5: Local magnetic moments on Fe, Ni and Mo sites as a function of composition.

The labels indicate (a) the concentration of Ni which is kept around 80-83 at.%. (b) the

concentration of Fe in at.%.

Figure 6.5 shows the experimental saturation magnetic moments at 5K for the alloys at

the six compositions, described earlier, as compared with the theoretical magnetic moment

estimates. Given the approximations involved in the theoretical estimates, the two agree

reasonably well across the composition range. The magnetic moment is boosted when Fe

concentration increases and the increase is almost linear. The opposite occurs when the Mo

concentration increases against that of Fe. In the fifth (from the left) composition shown

in the Figure 6.5(a), Mo concentration increases against Ni. Although the Fe concentration
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increases as we go from the fourth to the fifth composition (from the left), increase in the Mo

concentration causes the the moment not to increase as expected. The same is clear from

the Figure 6.5(b) : although the Mo concentration increases as we go from the second to the

third sample (from the left), increase in the Fe concentration against Ni causes the magnetic

moment to increase. The general picture is that Fe boosts magnetism and Mo depletes it.

In the ternary alloy, there is a competition between these two.

6.4 Magnetic ordering

The panels in Figure 6.6 show the pair energies for all possible pairs. Among them Fe-Fe,

Fe-Ni, Fe-Mo and Ni-Ni are dominant; other pairs are negligibly small and may be neglected.

The following comments may be made at this stage :

(i) The strongest pair energies are Fe-Fe, Fe-Ni and Fe-Mo, followed by Ni-Ni. The Ni-Mo

and Mo-Mo terms are negligible.

(ii) The Fe-Fe pair energy is almost independent of composition. Fe compositions vary

from 3 to 17 at.%. All other pair energies are strongly composition dependent. The

Fe-Ni coupling is ferromagnetic up to the third nearest neighbors and increases with

Fe concentration. It is known from earlier work on NiFe [Sanyal and Mookerjee, 1998]

that Fe atoms in the neighborhood of Ni enhances its moment. This is a reflection of

that. The Ni-Ni pair energies increase when Fe concentration increases and diminishes

as Mo concentration increases. These pair energies show the effect of enhancement by

neighboring Fe, when Fe concentration increases and its fragility as it becomes negligible

as Mo concentration is increased. Similarly, higher Fe concentrations leads to a small

Mo-Fe coupling, which becomes negligible at lower Fe concentrations. The behavior of

the pair energies indicate : a strong magnetism in Fe, which can induce magnetism in

Ni and Mo; a weak, fragile magnetism in Ni and a very weak, induced magnetism in

Mo.

(iii) Figure 6.6 shows the oscillatory behavior of Ni-Ni pair energies with the variation

of R = |Ri − Rj| for R ≥ a. For low concentrations of Mo the second, fifth and
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Figure 6.6: The dominant pair energies between Fe-Fe, Fe-Mo, Fe-Ni, and Ni-Ni for compo-

sitions with Fe content varying from 3 to 17 at %. (Magenta)=#1, (Violet)=# 2, (Blue)=#

3, (Green)=# 4, (Red)=# 5 and (Black)=# 6 of Table 6.1

tenth neighbor are anti-ferromagnetic. This would lead to frustration on triangular

and quadrilateral plaquettes in a cubic unit cell of the face-centered cubic lattice. As

the Mo concentration increases, these interactions become less negative and eventually

ferromagnetic. As a consequence, frustration on those triangular and quadrilateral

plaquettes decreases. We generally expect that the spin-glass phase occurs at larger Mo

concentrations. Not only does frustration decrease at these compositions, the magnetic

moment of Ni itself becomes small exactly at these same compositions. Consequently
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we may find paramagnetism rather than spin-glass behavior at these compositions.

Therefore, like NiMo, in NiFeMo too we may expect spin-glass in a very small range in

the temperature-composition phase diagram.

(iv) Figure 6.6 also shows that the pair energies decay with distance R. The behavior

is a signature of an exponentially decaying oscillatory interaction. The exponential

decay is due to disorder scattering which dampens the usual algebraically decaying

oscillatory interaction. As the Mo concentration increases, the range of interaction

rapidly decreases, until for the composition 83.2:13.8:3 it is almost nearest neighbor as

all other pair energies for R > a become negligibly small.

Figure 6.7: The first four moments of the probability distribution of the Ni-Ni pair-energies

shown as functions of Fe concentration.

(v) Figure 6.7 shows the moments

Mn =
∑
R>a

W (R){E(2),NiNi(R)}n

where W (R) is the coordination number Since the sites are randomly occupied by Ni

atoms, this randomness is reflected in the randomness in R and hence E(2),QQ′
(R). The

above moments therefore characterize the distribution in the pair-energies.
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(a) The first moment is positive throughout the composition range showing that on

the average the pair-energies favor ferromagnetism rather than frustration. Since

the nearest neighbor pair-energy (R = a/
√

2) is left out in the calculation of the

moments and the first moment goes to zero around Fe concentration of 2-3 at.%

and Mo concentration of around 14-15 at.%, at these compositions the pair-energy

is almost nearest-neighbor.

(b) The second moment also goes down to zero at Mo concentrations of 14-15 %. This

indicates that the distribution becomes delta-function like around the average or

mean value.

(c) The third and fourth moments measure the asymmetry and kurtosis of the dis-

tribution. Both becoming small indicates that the distribution becomes close to

Gaussian when Mo concentration is around 14-15 at.%.

The behavior of the moments indicate that at those compositions where we expect

the spin-glass phase to be stable, the distribution of E(2),NiNi(R) is a delta function

centered at zero. This is an indication that the moment on Ni may itself vanish at

these compositions.

6.5 Mean-field analysis of transition temperatures

Figure 6.8 shows the mean-field phase diagram for NiFeMo. Ni being a fragile magnet,

rapidly loses magnetic moment as Mo increases and exactly where we expect the spin glass

phase to exist (Tg > Tc) the system becomes paramagnetic. Existence of the spin-glass phase

in NiMo has not been reported. However, in the ternary NiFeMo, addition of Fe enforces

magnetism in Ni and around Mo concentration of 14-15% the Tc and Tg curves intersect

and there is a possibility of the spin-glass phase. The mean-field estimates of the transition

temperatures are never very accurate, therefore the best we can say is that exact critical

composition where we expect a spin-glass phase is around 14-15% of Mo and around 80-83%

of Ni.
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Figure 6.8: Mean-field phase diagram (top) for NiFeMo.

6.6 Magnetic relaxation : a theoretical analysis.

For our analysis we shall turn to the atomistic approach based on the quantum description

of solids, as proposed by Skubic et.al.[Skubic and O.Eriksson, 2008] as detailed in §2.8.2.

This is an approach which provides a study of magnetization relaxation from first-principles,

appropriate for systems with complex chemical compositions. The approach is based on the

density functional theory, which quite accurately reproduces both magnetic moments and

EPIs. We shall follow Skubic et.al.[Skubic and O.Eriksson, 2008] and begin with the Landau-

Lifshitz-Gilbert (LLG) equation and model finite temperatures by adding a stochastic field

to the effective field. This leads to a stochastic differential equation :

∂ ~mQ
R

∂t
= −γ ~mQ

R ×
{
~BQ
R +~bR(t)

}
− γα

m

[
~mQ
R × (~mQ

R ×
{
~BQ
R +~bR(t)

}
)
]

(6.1)

where,

~BQ
R = − ∂H

∂ ~mQ
R

H = −1

2

∑
QQ′

∑
R∈Q

∑
R′∈Q′

JQQ
′

RR′ ~m
Q
R · ~m

Q′

R′
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Figure 6.9: Relaxation of auto-correlation function at T=5K for (Top) α = 0.1 (bottom)

α = 0.4. The left panels show the fast initial decay while the right panels zooms onto the

later slower decay.

< bµR(t) >= 0 < bµR(t)bνR′(t′) >= 2DδµνδRR′δ(t− t′).

Q,Q′ refer to Fe, Ni and Mo components, γ is the electron gyromagnetic ratio. The stochastic

field ~bR(t) has a Gaussian distribution. The amplitude D of the stochastic field has been

derived by Skubic [Skubic and O.Eriksson, 2008] and brings in the temperature

D =
α

1 + α2

kBT

γm
.

α is a phenomenological damping parameter, associated with D and the temperature as

above and m is the magnitude of the magnetic moment.

For our numerical simulations we have found it convenient to work with the auto-

correlation function defined as:
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C(t) =
1

N

∑
R

〈{
~mQ
R(0) · ~mQ

R(t)
}〉

av
. (6.2)

The configuration average is taken over different configurations of the components Q.

The EPIs are calculated from our first-principles KKR-CPA method. Since the EPIs are

very small energy differences (of the order of mRy) of large energies (of the order of 103 Ry),

a separate calculation of each component energy will produce errors larger than the small

differences themselves. Then the inter-atomic ‘pair-exchange’ parameters will be calculated

following the theory of Lichtenstein et al. Figure 6.6 shows the dominant EPIs of the problem

as functions of distance. At these compositions JNiNi(|R − R′|) is weak, consistent with Ni

beginning to lose its intrinsic moments at these dilutions. JNiFe(|R−R′|) and JMoFe(|R−R′|)
are reasonably strong, while JFeFe(|R − R′|) remains unchanged with composition. This is

consistent with magnetism on Fe being robust and weakly dependent on its environment.

The relaxations were carried out on a cluster of size 32 × 32 × 32 and at two different

damping coefficients and at 5 K.

Figure 6.9 shows the relaxation of the auto-correlation function C(t) for two different

values of the damping parameter α. The left panels focus onto the fast initial relaxation,

while the right panels zoom onto the later slower relaxation. Both the curves can be fitted

to the double exponential form :

C(t) = Ceq + A exp (−t/τ1) +B exp (−t/τ2).

The dynamics of the relaxation process, as measured by the auto-correlation function

with zero waiting times can be divided into two distinct regimes : an initial fast relaxation,

followed by relaxation towards the global minimum. Let us first analyze the influence of

α τ1 (s) τ2 (s)

0.1 32.04± 4.8 1273.8± 87.8

0.4 28.48± 2.3 925.8± 66.3

Table 6.3: Fitted time parameters (τ1 < τ2) for the double exponential decay of magnetiza-

tion at 5K for different damping parameters
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damping on spin relaxation. The left panels in Figure 6.9 show the initial dynamics immedi-

ately after quench. Table 6.3 shows the relaxation times τ1 and τ2 of the double exponential

fit. The short time behavior, characterized by τ1 is weakly dependent on the damping α. In

our case we have begun with a completely random spin distribution. The immediate relax-

ation of the auto-correlation function is dominated by strong precisional motion of the spins

in the rapidly varying effective exchange fields. The system relaxes via a damping torque

on each atomic spin. The subsequent relaxation is associated with equilibration of spins in

their local fields. The relaxation rate τ2 is now dependent on α. The larger the damping the

smaller is τ2, that is, the relaxation is faster. This is clear from Table 6.3 that the variation

of τ2 with α is somewhat larger than the errors in its determination. From the right panels

of Fig. 6.9 we see that after 1000 sec the autocorrelation decays to 0.015 from the initial

value of 1 for α = 0.1, while it decays to 0.0125 for α = 0.4, in agreement with the above

statements.

The behavior and arguments are similar to that given by Skubic et.al.[Skubic and O.Eriksson,

2008] for CuMn. Our analysis concludes that the relaxation may be fitted to a double ex-

ponential : an initial fast decay followed by a slower but still exponential relaxation. In the

quasi-equilibrium state the magnetization and auto-correlation relaxations are similar. Our

theoretical relaxation results agree qualitatively with experiment.

The main point to note that, both in experiment and theory, there does not seem to be any

signature of an anomalously slow power-law, logarithmic or stretched exponential relaxation

characteristic of the pure spin-glass phase. Given the experimental results on frequency

dependent a.c. susceptibility peaks and bifurcation between FC and ZFC magnetization in

low fields, absence of anomalously slow relaxation comes as a surprise.

6.7 Conclusions

In this paper we have reported results of experiments based on magnetization variation with

temperatures at low magnetic fields and with magnetic field at 5K on NiFeMo ternary alloys

at six different compositions. For five of the compositions there is a clear indication of tran-

sition from a paramagnetic to a random ferromagnetic phases. Fe boosts and Mo depletes
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the fragile moment on Ni. The sixth sample with large Mo concentration showed the possi-

bility of a glassy phase. First-principles density functional based theoretical analyses agreed

well with the experimental data. A mean-field phase study also indicated paramagnetic-

ferromagnetic transitions in a large part of the phase diagram. NiMo alloys threw up the

possibility of Ni losing its fragile moment due to alloying with Mo just as the spin-glass phase

becomes possible [P.Singh et al., 2011]. In NiFeMo, further alloying with Fe can bolster Ni

moment and make the spin-glass phase stable.
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Chapter 7

Magnetic properties of FeNiW alloy

This chapter is based on

Mitali Banerjee, Abhijit Mookerjee, A.K. Majumdar, Rudra Baner-

jee, Biplab Sanyal, and A.K. Nigam. Magnetism in FeNiW disor-

dered alloys: Experiment and theory. J. Magn. Magn. Mater., 322

(21):3558–3564, November 2010. ISSN 03048853.

7.1 Introduction

Magnetic cores require materials which have high permeability and low magnetostriction.

Ni-Fe permalloys are one of the widely used materials in this area. High permeability is

expected to result from domain rotation against weak crystalline anisotropy or from boundary

displacements where the opposing force is small [Bozorth, 1953]. In last chapter (§6) we had

substituted the 4d element Mo for Fe and studied its magnetic properties. In this work we

shall substitute Fe with the 5d element W. Small amounts of added W, like Mo, enhances

the permeability of the material and, simultaneously, it increases the electrical resistivity of

permalloys reducing eddy current loss.
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7.2 Samples

The sample chosen here is based on the experimental results that we have. The atomic

percentage of samples used is shown in Table 7.1 The electronic configurations of Fe, Ni and

# Ni Fe W

1 78.9 18.1 3.0

2 79.4 14.1 6.5

3 81.0 11.8 7.2

4 83.5 7.6 8.9

5 82.6 6.9 10.5

6 86.6 3.1 10.3

Table 7.1: Composition of the six samples in atomic %.

W are [Ar] 3d6 4s2, [Ar] 3d8 4s2 and [Xe] 4f145d46s2 respectively. It has a very high melting

point of 3683 K.

7.3 Experimental Motivation 1

In all the samples Ni concentration remains roughly around 79 - 86 at % while those of Fe

decreases from 18 to 3 at % and those of W increases from 3 - 10 at % as we go from sample

# 1 to # 6 in 7.1.

Figure 7.1 shows the magnetization variation with temperature for three different com-

positions. The left panel shows the magnetization variation for a sample with low Fe content

of 3.1 at % (sample 6 of Table. 7.1.) measured at 20 Oe external field. The critical tem-

perature Tc is obtained, as shown in the inset of left panel of Figure 7.1, by a sharp dip in

dM/dt at the point of inflection in the M vs T curve. The right panel shows M vs T for

two compositions with Fe content at 11.8 at.% and 14.1 at. % (# 3 and # 2 in 7.1), both

1The experimental study discussed here is based on [Banerjee et al., 2010a] which is included in the thesis

of Dr. Mitali Banerjee
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Figure 7.1: Magnetization vs Temperature for three compositions. (left) low Fe content of

3.1 at.% showing the behavior of dM/dT in the inset. (right) higher Fe content of 11.8 at.%

and 14.1 at.%.

measured at an external field of 50 Oe. We note that Tc increases with Fe content for all

the samples. Unlike the case of FeNiMo alloy (see §6), at no composition is there a sign of

glassy behavior with different field-cooled and zero-field-cooled responses, at least not even

at W concentration of 10.5 at.%.

Figure 7.2 shows the M(H) vs H curves for the three samples 4,5 and 6 (Table 7.1).

All experiments were carried out at 5 K. The saturation fields are very small, even smaller

than those found in FeNiMo earlier. None of the samples show any reasonable hysteresis.

Saturation magnetization increases with increasing Fe content. All samples studied are clean

random ferromagnets. The hysteresis does not indicate any glassy behavior.

Table 7.2 summarizes the experimental data on the structure and magnetism of the six

different samples described above.
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Figure 7.2: M(H) vs H taken for samples 4,5 and 6 taken at 5 K.

7.4 Electronic Structure

Figure 7.3 shows the local magnetic moments on the Fe, Ni and W atoms in the alloy. The

Ni concentrations increase from 78.9 at % to 86.6 at % across the six samples, while the

Fe concentration goes down from 18.1 at % to 3.1 at %. The Fe moment hardly changes

across the composition range. That for Ni increases almost linearly as Fe concentration

increases and correspondingly W concentration decreases. The moment on W is small and

opposite to that of Fe and Ni. Its behavior is a mirror image of that for Ni. We conclude

that the moment on Ni is fragile. It is enhanced by Fe and diminished by W sitting in the

neighborhood of Ni. The moment on W is induced by Fe and vanishes as Fe concentration

decreases.

Figure 7.4 shows the experimental saturation magnetic moments at 5 K for the alloys

at the six compositions described earlier. The comparison is with the theoretical magnetic

moment estimates. Given the approximations involved in the theoretical estimates, the two

agree reasonably well across the composition range. The magnetic moment is boosted when

Fe concentration increases and increases almost linearly. This analysis complements our

earlier conclusion that Fe boosts magnetism in Ni while W depletes it. In the ternary alloy,
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Sample a Ms Tc

(Å) (emu/gm) µB (K)

1 3.560 80.4 0.85 775

2 3.562 54.2 0.57 530

3 3.567 50.0 0.53 515

4 3.573 28.6 0.30 300

5 3.576 23.0 0.24 191

6 3.586 10.4 0.11 55

Table 7.2: Summary of experimental results on the six samples.

Figure 7.3: Local magnetic moments on Fe, Ni and W sites as a function of composition.

The labels indicate the concentration of Ni which is kept around 80-83 at %.
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Figure 7.4: Total magnetic moments as a function of Fe concentration. The labels indicate

the concentration of Ni in the sample.

there is a competition between these two. Because the alloys have mostly Ni, the behavior

of the local moment on Ni mirrors that of the total moment.

7.5 Application to phase analysis of FeNiW ternary

alloys

We shall continue our electronic structure analysis for FeNiW ternary alloys. The panels in

Figure 7.5 show the pairing energies for the six distinct pairs from the three components Ni,

W, and Fe. The Figure 7.6 illustrates the composition dependence of the pairing energies.

The following comments may be made at this stage :

(i) The strongest couplings are Fe-Fe, Ni-Fe and W-Fe, followed by Ni-Ni. The Ni-W

coupling is relatively weak and W-W coupling is almost negligible.

126



Section 7.5

Figure 7.5: The pair interactions for different pairs of FeNiW alloy. Black for # 1; Red for

# 2; Green for # 5; Blue for # 6 in alloy composition shown in Table 7.1.

Figure 7.6: Behavior of the n-th nearest neighbor pair energies Jn as functions of composition.

The W concentration is labeled on the graphs.
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(a) (b)

Figure 7.7: (a) Spread in JNiNi(R) as a function of R (R > a) (b) Behavior of log(|JNiNi(R)|)
vs R for the same compositions # 6,#5,# as in Table 7.1.

(ii) The Fe-Fe coupling is almost independent of composition. Fe compositions vary from

3 to 12 at %. All other couplings are strongly composition dependent. The Ni-Fe

coupling is ferromagnetic up to the third nearest neighbors and increases with Fe con-

centration. It is known from earlier works on NiFe that Fe atoms in the neighborhood

of Ni enhances its moment. This is a reflection of that. As for Ni-W, the coupling is

induced by Fe and rapidly becomes negligible as the Fe concentration decreases and W

increases. The Ni-Ni coupling shows both the effect of its enhancement by neighbor-

ing Fe as Fe concentration increases and its fragility when it becomes negligible as W

concentration is increased. At higher Fe concentrations, the W-W attains a very small

antiferromagnetic coupling. However, at lower Fe concentrations it is negligible. Simi-

larly, higher Fe concentrations lead to a small W-Fe coupling which becomes negligible

at lower Fe concentrations. The behavior of the pair couplings indicates : a strong

magnetism in Fe which can induce magnetism in Ni and W; a weak, fragile magnetism

in Ni and a very weak, induced magnetism in W.
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(iii) In Figure 7.7(a) we show the oscillatory behavior of JNiNi(R) vs R for R > a. For low

concentrations of W the second, fifth and tenth neighbor J(R) are antiferromagnetic

(shown in red arrows). As the W concentration increases, these interactions become

less negative and eventually ferromagnetic. As a consequence, frustration on triangular

and quadrilateral plaquettes in an cubic unit cell of the face-centered cubic lattice

drastically decreases. Frustration decreases exactly at those compositions where we

expect a spin-glass phase. Therefore, like NiW in FeNiW too we should expect a spin-

glass, if at all, in a very narrow range in the temperature-composition phase diagram.

(iv) In Figure 7.7(b) we plot log(|JNiNi(R)|) vs R. The behavior is a signature of an ex-

ponentially decaying oscillatory interaction. The exponential decay is due to disorder

scattering which dampens the usual algebraically decaying oscillatory RKKY type in-

teraction. As the W concentration increases, the range of interaction rapidly decreases,

until for the composition 83.2:13.8:3 it is almost nearest neighbor as all other J(R) for

R > a become negligibly small.

Figure 7.8 compares the experimental and mean-field estimates of the Curie temperatures

for the six samples. The mean-field over-estimates Tc for all compositions. However, the

qualitative trend of Tc elevation with increasing FE content and depression with increasing

W content at a fixed Ni concentration, is reproduced by our mean-field prediction and

confirmed by experiment.

Figure 7.9 shows the composition dependence of the critical temperatures Tc and Tg

obtained from the mean field equations (9) and (10). For most of the composition range

shown here, the Tg sits lower than Tc, therefore the transition is observed between the

paramagnetic to the random ferro-magnetic phases. Only in the composition range at the

lowest Fe concentration (3 at %) with the largest W concentration (10.3 at %) there is a

possibility of Tg crossing over Tc and a transition to a spin-glass phase. Our extrapolation to

W concentrations > 10.3 at.% indicates that a spin-glass phase may not exist in this alloy

at all. Unlike FeNiMo, this seems to be the experimental evidence as well.
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Figure 7.8: Experimental and theoretical estimates of the Curie temperature Tc for the six

samples.

Figure 7.9: The mean-field phase diagram showing the critical temperatures Tc and Tg as a

function of composition.
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7.6 Conclusion

Using first-principles LSDA based TB-LMTO-ASR method we have obtained the magnetic

moment across the composition range. Our values agree reasonably well both qualitatively

and quantitatively with the experimental saturation magnetization as shown in [Banerjee

et al., 2010a]. We have gone ahead and, based on the generalized perturbation expansion,

mapped the energetics of the problem onto an equivalent random Ising model. The pair

energies of the Ising model were derived from the TB-LMTO-ASR using Lichtenstein’s for-

mula. Our mean-field analysis of the model shows that at low Fe concentrations not only

frustration decreases, but Ni also loses its moment. The resulting phase diagram confirms

the possibility that spin-glass transition may not take place in this system even at low Fe

concentrations, as found experimentally.
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Chapter 8

Magnetic properties of AuCrFe alloy

This chapter is based on

Banerjee, Rudra, Abhijit Mookerjee, and Biplab Sanyal. Magnetic

ordering in ternary AuFeCr alloys. in manuscript.

8.1 Introduction

In 3d transition metal doped noble metal binary alloys [Nakai et al., 1989], a spin glass

phase is observed in low 3d-metal concentration. For a A1−xBx where A is a Nobel metal

and B is a transition metal, 5 < x < 10 is generally the region where we expect a spin

glass behavior due to the long ranged RKKY type interaction. In this paper we have shown

that in ternary alloy, we can increase the percolation limit by doping two suitably chosen 3d

metal (FM-AFM)to a noble metal matrix.

8.2 Low Au regime

We have chosen the concentration where Au concentration is very low and fixed Cr concen-

tration to 20 atomic %. Figure 8.1 shows the magnetic EPE for the first few neighbors. The

dominant magnetic interactions are Fe-Fe(FM), Fe-Cr and Cr-Cr (both AFM). It is noted
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High Au Concentration: Around percolation limit

# Au Cr Fe

1 10 20 70

2 20 20 60

3 25 20 55

4 30 20 50

5 35 20 45

6 40 20 40

Table 8.1: Samples in low-Au regime in atomic %

that dominant interactions, specially that for Fe-Fe and Fe-Cr vary very little with concen-

tration if compared to weaker interactions involved with Au. Figure 8.2 shows spin-spin

auto-correlations for those samples. It is seen that in this low-Au regime, magnetic ordering

is unstable. It is seen that when xFe � xCr, the correlation tends to some stability in higher

tw(as in xAu=10,20) but where xFe ≈ xCr, due to FM-AFM strong interaction, it remains

virulent(as in xAu=30,40).

8.3 High Au Concentration: Around percolation limit

We have studied behavior of AuCrFe alloy with xCr is over [§8.3.1], just over [§8.3.2], equal

[§8.3.3] and less[§8.3.4] then the percolation limit.

8.3.1 Cr above the percolation limit

We have fixed the Cr concentration at 25 atomic % and varied Au and Fe concentration as

shown in Table 8.2. The basic features of Jij, as in Figure 8.3 remains same in this regime

as well with Fe-Cr and Fe-Fe remains almost same through concentration.

There are the following features in Figure 8.3:

i. Fe-Fe interaction is the strongest followed by Cr-Cr and Fe-Cr; with Au-Au being the

weakest.
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Section 8.3

Figure 8.1: Magnetic pair interaction for AuxCr20Fe100−20−x alloy with low Au concentra-

tion.(Black)x=10; (Red)x=20; (Green)x=25; (Blue)x=30; (Indigo)x=35;(Grey)x=40

ii. The stronger the interaction, the least it depends on concentration. Fe-Fe interaction

does not depend on composition at all in this range; while for Au-Au to Cr-Cr, it depends

a lot on composition.

In this regime, as in Figure 8.4, there is a obvious and strong slowing down in spin dynamics

as is evident from even lower waiting time.

If we look into it we can see the following features:

i. For all the concentrations, there is a strong signal of frozen phase.

ii. Composition # 2 is absolutely frozen as the auto-correlation for higher waiting time is

completely frozen. This is because of the fact that while Fe concentration is u to the

percolation limit, along with frustration due to presence of Cr makes it frozen.
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High Au Concentration: Around percolation limit

Figure 8.2: Spin relaxation of AuxCr20Fe100−20−x alloy for different waiting time

# Au Cr Fe

1 60 25 15

2 65 25 10

3 70 25 05

Table 8.2: Samples in Cr>percolation limit

8.3.2 Cr near the percolation limit

In this section we will discuss alloy composition with Cr concentration fixed at 18 atomic %

which is slightly over the percolation range. The composition studied is shown in Table 8.3.

In brief, as shown in Figure 8.6, we can see a strong (but weaker than that in §8.3.2)

aging in spin dynamics. There is a slowing down as normal in pure AuFe alloy. Aging is

evident throughout the concentration range, but only in the highest waiting time.

The following features are evident from the Figure 8.5.

i. The basic natures of magnetic interactions are same as in §8.3.1. The Fe-Fe is strongest
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Figure 8.3: Magnetic pair interaction for AuxCr25Fe100−25−x alloy with low Au concentra-

tion.(Black)x=60; (Red)x=65; (Green)x=70.

# Au Cr Fe

1 60 18 22

2 65 18 17

3 70 18 12

4 80 18 02

Table 8.3: Samples in Cr≈percolation limit
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High Au Concentration: Around percolation limit

Figure 8.4: Autocorrelation function for AuxCr25Fe100−25−x alloy for compositions # 1,# 2

and # 3 in Figure 8.2.

and almost independent of composition, where when the interaction is weak, it becomes

more dependent on composition.

ii. Unlike in §8.3.1, Cr-Fe interaction shows a hint of composition dependence. This ten-

dency will grow larger as we can see in later sections.

iii. It can also be seen from comparing Figure 8.5 and Figure 8.3 that the Fe-Fe interaction

is also decreasing while others are remaining same. This point we will discuss later in

§8.3.5

There is a magnetic slowing down that is evident from the Figure 8.6. We can see the
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Figure 8.5: Magnetic pair interaction for AuxCr18Fe100−18−x alloy with low Au concentra-

tion.(Black)x=60; (Red)x=65; (Green)x=70; (Blue)x=80.

following features of the spin dynamics from the figure:

i. There is no evident frozen phase in this range.

ii. But we cannot rule out all possibilities as there is a spin-frozen-phase like tail at the

higher waiting time. But, not withstanding the possibility, we can safely say there is

very little possibility that spin glass phase will occur in this concentration range of Cr.
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High Au Concentration: Around percolation limit

Figure 8.6: Autocorrelation function for AuxCr18Fe100−18−x

8.3.3 Cr inside percolation limit

In this section we have studied the AuCrFe alloy where the Cr concentration is fixed at 10

atomic % which is the percolation limit of AuCr binary alloy.

# Au Cr Fe

1 60 10 30

2 70 10 20

3 80 10 10

4 85 10 05

Table 8.4: Samples in Cr inside percolation limit

Figure 8.7 shows the magnetic interaction between its components for different concen-

tration shown in Table 8.4. Following features are evident from the Jij plots Figure 8.7:
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Figure 8.7: Magnetic pair interaction for AuxCr10Fe100−10−x alloy with low Au concentra-

tion.(Black)x=60; (Red)x=70; (Green)x=80; (Blue)x=85.

i. Basic qualitative nature remains same as in §8.3.1 and §8.3.2.

ii. The absolute value of magnetic interaction is decreasing specially for first nearest neigh-

bor interaction for Fe based interaction as Au-Fe, Fe-Cr and Fe-Fe.

iii. As the absolute value of Jij decreases, even the strongest Fe-Fe interaction becomes

composition dependent; but we can also see this dependency decreases with higher con-

centration of Au. The variation of Jij is very small for # 3rd and # 4th composition

shown in Table 8.4.

Figure 8.8 shows the spin relaxation of this alloy for different waiting time. It is evident
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High Au Concentration: Around percolation limit

Figure 8.8: Autocorrelation function for AuxCr10Fe100−10−x

from the figure that the strong spin glass phase is broken and the tendency of relaxation

indicates a paramagnetic ground state. The following features can also be seen in this figure:

i. No spin glass phase is present in this composition range. The phase present in binary

alloy is completely broken.

ii. A signature of AuCr binary spin glass phase can be seen if we look at Figure 8.8 with

higher Au concentration. Though no frozen phase exists, the tendency of slowing down

is clear as we increase Au concentration, which means, decreasing the Fe concentration.

For Au80 and Au85, i.e. Fe is in impurity limit, tendency of slowing down for higher

waiting time is clearly visible.
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8.3.4 Cr lower than the percolation limit

In this last section, we will see the magnetic interaction and spin relaxation characteristics

when Cr concentration is 06 atomic %, which is less then its binary percolation limit. The

composition studied is given in Table 8.5. Figure 8.9 shows the magnetic interactions

# Au Cr Fe

1 70 06 24

2 80 06 14

3 85 06 09

4 90 06 04

Table 8.5: Samples in Cr<percolation limit

Figure 8.9: Magnetic pair interaction for AuxCr6Fe100−6−x alloy with low Au concentra-

tion.(Black)x=70; (Red)x=80; (Green)x=85; (Blue)x=90.
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High Au Concentration: Around percolation limit

between the different pairs of components. The following properties can be seen in it:

i. The qualitative nature remains almost same. But we can see the Au-Cr interaction for

Au90 for first nearest neighbor is ferromagnetic ; a different behavior from the other

compositions we have studied.

ii. First nearest neighbor interaction for all the interaction is very high.

iii. The Au90, i.e. # 4th composition of Table 8.5 shows a distinct oscillatory feature for Fe-Fe

and Cr-Cr interaction. Though this oscillatory behavior is present in other composition

also, they are not as distinct. This is a clear indication of existence of frustration. We

will explore this more with spin relaxation seen in Figure 8.10.

Figure 8.10: Autocorrelation function for AuxCr6Fe100−6−x

In Figure 8.10 we can see aging in spin dynamics but weaker than both in §8.3.1 and §8.3.2.

There is a slowing down as normal in pure AuFe alloy. Aging is evident only for xAu = 80

and in the highest waiting time. If we look into further details, we can see
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i. No evident frozen phase is seen except Au90, i.e. # 4th composition of 8.5.

ii. The spin relaxation is slow, but except for Au90, all tend towards a paramagnetic ground

state.

iii. Au90, i.e. # 4th composition of 8.5 shows a distinct spin frozen phase not only for very

high waiting time but even before that. This is expected from the result of Figure 8.9,

which shows very frustrated interaction for this composition.

8.3.5 Comparison

In the Figure 8.11, we have compared the magnetic EPE (Jij)’s for Au70CrxFe30−x

In all the cases, we see the magnitude of interaction increases as the concentration of

Cr decreases. This means the FM-AFM competition increases with the decrease of Cr

concentration. As a result, as evident from Fig. 8.11(a), there is a strong spin glass phase in

high Cr concentration. This is very reasonable as when xCr is in impurity range, it increases

the mobility to spins and thus breaks the spin glass phase as opposite to in higher xCr where

FM-AFM interaction becomes more evident and contributes to the spin-spin frustration.
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(a) (b)

(c)

Figure 8.11: (a)comparative plot with Au70CrxFe30−x for tw = 40960ps. (b) and (c) Com-

parative plot effective interaction for dominating pair interactions: (b) for nearest neighbor

and (c) for 2nd nearest neighbor and beyond. (Black) Cr=06; (Red)Cr=10; (Green)Cr=18

and (Blue)Cr=25 for Au70CrxFe30−x alloy
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Chapter 9

Conclusion

Art is never finished, only abandoned.

Leonardo da Vinci

In this thesis I have shown my work on development of configuration average based code

ScASR and its application on binary and ternary disordered alloys. I have shown the method-

ology is at par and even for some specific cases, better than CPA, the most used methodology

for studying disordered systems.

Taking specific cases like in FeNiMo, FeNiW and NiMn, I have shown our result matches

well with experimental results; which is the best proof of usability of any numerical method.

If we look back to each chapter, the major achievements of the chapter is as follows:

In chapter 3 I have discussed the algorithm of my code and compared with other most

prominent methodologies exist in this field.

In chapter 4 I have discussed several binary alloys to show the range of applications the

code has.

In chapter 5 I have shown its application in NiMn alloy.

In chapter 6 and 7 I have discussed FeNi alloy doped with Mo and W respectively.

In this three chapter I have studied their electronic and magnetic structure and effective

pair interactions and compared the results wit experimental findings.

In chapter 8 I have studied the magnetic properties and ageing of ternary AuCrFe alloy in

the region around Cr concentration where spin glass phase exists in binary AuCr alloy.

This helps us ti understand how exactly introduction of antiferromagnetic Cr affects

the AuFe alloy.
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Conclusion

But, as par the quotation from Leonardo da Vinci that starts this chapter, the work can

not be considered finished or complete. There is a lot of scope for improvement in the code.

I am planning to incorporate short-range ordering and non-collinear magnetism in ScASR.

Incorporation of inhomogeneity and L−S coupling in the code and applying the methodology

to confined systems are the next thing I would like to work on.
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RM Bozorth. The Permalloy Problem. Rev. Mod. Phys, 25(1):42, 1953.

W. F. Brown. Thermal fluctuations of a single-domain particle. Phys. Rev., 130(5):1677,

1963.

N. R. Burke. A tight-binding theory of the interactions between transition metal adatoms

adsorbed on a transition metal substrate. Surf. Sci., 58:349, 1976.

150



REFERENCES

WH Butler. Self-consistent cluster theory of disordered alloys. Phys. Lett. A, 39(3):203–204,

1972.

W.H. Butler. Self-consistent cluster theory of disordered alloys. Phys. Rev. B, 8(10):4499,

1973.

V. Cannella and JA Mydosh. Magnetic ordering in gold-iron alloys. Phys. Rev. B, 6(11):

4220, 1972.

R. Car and M. Parrinello. Unified Approach for Molecular Dynamics and Density-Functional

Theory. Phys. Rev. Lett., 55:2471–2474, Nov 1985.

W. J. Carr. Intrinsic Magnetization in Alloys. Phys. Rev., 85:590–594, 1952.

D. M. Ceperley and B. J. Alder. Ground State of the Electron Gas by a Stochastic Method.

Phys. Rev. Lett., 45(7):566–569, 1980.

A. Chakrabarti and A. Mookerjee. A self-consistent TB-LMTO-augmented space recursion

method for disordered binary alloys. The European Physical Journal B-Condensed Matter

and Complex Systems, 44(1):21–32, 2005.

S. Chakraborty and A. K. Majumdar. Galvanomagnetic studies in γ-Ni100−x−yFexCry permal-

loys (5 < x < 23; 2 < y < 21). Phys. Rev. B, 58:6434–6441, 1998a.

S. Chakraborty and AK Majumdar. Electron transport studies in Ni-rich [gamma]-NiFeCr

alloys. J. Magn. Magn. Mater., 186(3):357–372, 1998b.

RV Chepulskii and VN Bugaev. Anaytical methods for calculation of the short-range order

in alloys: II. Numerical accuracy study. J. Phys.: Condens. Matter, 10:7327, 1998.

D. Chowdhury. The Spin Glass Transition. PhD thesis, Department of Physics, IIT, Kanpur,

1983.

D. Chowdhury and A. Mookerjee. Relation between Wohlfarth’s model and the percolation

model of spin glasses. J. Phys. F: Met. Phys, 13:L19, 1983.

151



REFERENCES

P.C. Clapp and S.C. Moss. Correlation functions of disordered binary alloys. I. Phys. Rev.,

142(2):418, 1966.

P.C. Clapp and S.C. Moss. Correlation functions of disordered binary alloys. II. Phys. Rev.,

171(3):754, 1968.

E.U. Condon and G. Shortley. The theory of atomic spectra. Cambridge Univ Pr, 1935.

A. R. Williams J. W. D. Connolly. Density-functional theory applied to phase transforma-

tions in transition-metal alloys . Phys. Rev. B, 27:5169, 1983.

F. Cyrot-Lackmann. On the electronic structure of liquid transitional metals. Advances in

Physics, 16(63):393–400, 1967.

T. G. Dargam, R. B. Capaz, and Belita Koiller. Critical analysis of virtual crystal approxi-

mation. Brazilian Journal of Physics, 27/A(4):299, 1997.

F. den Hollander and F. Toninelli. Spin glasses: A mystery about to be solved. EURANDOM,

2004.

B. Derrida. A generalization of the random energy model which includes correlations between

energies. Journal de Physique Lettres, 46(9):401–407, 1985.

F.Gautier F. Ducastelle. Generalized perturbation theory in disordered transitional alloys:

Applications to the calculation of ordering energies . J. Phys. F: Met. Phys, 6:2039, 1976.

S.F. Edwards and P.W. Anderson. Theory of spin glasses. J. Phys. F: Met. Phys, 5:965,

1975.

T. L. Einstein and J. R. Schrieffer. Indirect Interaction between Adatoms on a Tight-Binding

Solid. Phys. Rev. B, 7:3629–3648, Apr 1973.

Olle Ericksson. UppASD. http://www.physics.uu.se/en/page/UppASD, 2009.

Jay Fenlason and Richard Stallman. The GNU Profiler . GNU, December 2011.

152



REFERENCES

E. Fermi. Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend.

Accad. Naz. Lincei, 6:602, 1927.

A. Finel and F. Ducastelle. Phase Transformations in Solids. In Materials Research Society

Symposia Proceedings, volume 21, 1984.

J. Friedel. Advances in Physics. Phil. Mag. Suppl, 3:446, 1954.

Marc Gabay and Gérard Toulouse. Coexistence of Spin-Glass and Ferromagnetic Orderings.

Phys. Rev. Lett., 47:201–204, 1981.

S. Ganguly, M. Costa, A.B. Klautau, A. Bergman, B. Sanyal, A. Mookerjee, and O. Eriksson.

Augmented space recursion formulation of the study of disordered alloys with noncollinear

magnetism and spin-orbit coupling: Application to MnPt and Mn3Rh. Phys. Rev. B, 83

(9):94407, 2011.

Subhradip Ghosh, P. L. Leath, and Morrel H. Cohen. Phonons in random alloys: The

itinerant coherent-potential approximation. Phys. Rev. B, 66:214206, Dec 2002.

T. L. Gilbert. A phenomenological theory of damping in ferromagnetic materials. Magnetics,

IEEE transactions on, 40(6):3443, 2004.

TJ Godin and R. Haydock. New method for calculation of quantum-mechanical transmit-

tance applied to disordered wires. Phys. Rev. B, 38(8):5237, 1988.

TJ Godin and R. Haydock. The Block recursion library: accurate calculation of resolvent

submatrices using the block recursion method. Comput. Phys. Commun., 64(1):123–130,

1991.

A. Gonis. Green functions for ordered and disordered systems. North-Holland Amsterdam,

1992.

A. Gonis, X.G. Zhang, AJ Freeman, P. Turchi, GM Stocks, and DM Nicholson. Config-

urational energies and effective cluster interactions in substitutionally disordered binary

alloys. Phys. Rev. B, 36(9):4630, 1987.

153



REFERENCES
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